Метрология, стандартизация и сертификация
Download 1.07 Mb. Pdf ko'rish
|
Metod Метрология амалий
и
распределение Пуассона. В настоящем курсе они не рассматриваются. 4.5.5 Доверительные интервалы Приведенные выше оценки параметров распределения случайных величин в виде среднего арифметического для оценки математического ожидания и СКО для оценки дисперсии называются точечными оценками, так как они выражаются одним числом. Однако в некоторых случаях знание точечной оценки является недостаточным. Наиболее корректной и наглядной оценкой случайной погрешности измерений является оценка с помощью доверительных интервалов. Симметричный интервал в границами ± Δх(Р) называется доверительным интервалом случайной погрешности с довери- 3 2 x x 1 2 58 тельной вероятностью Р, если площадь кривой распределения между абсциссами –Δх и +Δх составляет Р-ю часть всей площади под кривой плотности распределения вероятностей. При нормировке всей площади на единицу Р представляет часть этой площади в долях единицы (или в процентах). Другими словами, в интервале от - х(Р) до + х(Р) с заданной вероятностью Р встречаются Р 100% всех возможных значений случайной погрешности. Доверительный интервал для нормального распределения находится по формуле: t P x ) ( где коэффициент t зависит от доверительной вероятности Р. Для нормального распределения существуют следующие соотношения между доверительными интервалами и доверительной вероятностью: 1 (Р=0,68), 2 (Р= 0,95), 3 (Р= 0,997), 4 (Р=0,999). Доверительные вероятности для выражения результатов измерений и погрешностей в различных областях науки и техники принимаются равными. Так, в технических измерениях принята доверительная вероятность 0,95. Лишь для особо точных и ответственных измерений принимают более высокие доверительные вероятности. В метрологии используют, как правило, доверитель- ные вероятности 0,97, в исключительных случаях 0,99. Необходимо отметить, что точность измерений должна соответствовать поставленной измерительной задаче. Излишняя точность ведет к неоправданному расходу средств. Недостаточная точность измерений может привести к принятию по его результатам ошибочных решений с самыми непредсказуемыми последствиями, вплоть до серьезных материальных потерь или катастроф. При проведении многократных измерений величины х, подчиняющейся нормальному распределению, доверительный интервал может быть построен для любой доверительной вероятности по формуле: ) (x S t x q где t q – коэффициент Стьюдента, зависящий от числа наблюдений n и выбранной доверительной вероятности Р. Он определяется с помощью таблицы q-процентных точек распределения Стьюдента, которая имеет два параметра: k = n – 1 и q = 1 – P; ) (x S – оценка среднего квадратического отклонения среднего арифметического. Доверительный интервал для погрешности х(Р) позволяет 59 построить доверительный интервал для истинного (действи- Download 1.07 Mb. Do'stlaringiz bilan baham: |
Ma'lumotlar bazasi mualliflik huquqi bilan himoyalangan ©fayllar.org 2024
ma'muriyatiga murojaat qiling
ma'muriyatiga murojaat qiling