Mundarija: kirish asosiy qism bir jinsli bo’lmagan chegaraviy masala uchun Grin funksiyasi


Download 0.84 Mb.
bet8/13
Sana31.01.2023
Hajmi0.84 Mb.
#1145118
1   ...   5   6   7   8   9   10   11   12   13
Bog'liq
Grin formulasi. C2 sinf funksiyalari va garmonik funksiyalarning integral ifodasi

Javob: a)
b)
c)
d)
4-§.Grin funksiyalarni tuzishning nostandart usuli.
Matematika fanining spektal analiz, chegaraviy masalalarni yechish bo’limlarida Grin funksiyasidan keng foydalaniladi. Biz Grin funksiyalarini nostandart ko’rinishda tizishni misollsr vositasida bayon etamiz.
1-misol.
(2.1)
chegaraviy masalalarning Grin funksiyasini tuzing.


Yechilishi (2.1) tenglamani ketma-ket integrallash filan

tenglikni hosil qilamiz. Integral qo’shiluvchini 0.

Belgilashlar bilan bo’laklab integrallab

tenglikka kelamiz.

boshlang’ich shartdan va
boshlang’ch shartdan esa
no’malum koeffisientlarini aniqlaymiz. Natijada (2.1) chegaraviy masalaning yechimi

Endi bu tenglikning o’ng qismida shakil almashtirishlar bajarib uning ko’rinishini o’zgartiramiz.

bu yerda

(2.1) chegaraviy masalaning Grin funksiyasi bo’lib bu chegaraviy masala



integral tenglamaga teng kuchli.
2-misol
(2.2)
chegaraviy masalaning Grin funksiyasini tuzing.
Yechilishi (2.2) ifodagi differensial tenglamani ketma-ket integrallash natijasida

tenglikni hosil qiling
boshlangich shartlardan , boshlang’ich shartdan esa

noma’lum koiffisientlarni aniqlaymiz. U holda (2.2) chegaraviy masalaning echimi

bu erda


(2.2) chegaraviy masalaning Grin funksiyasidir.
Xuddi shu tarzda
(2.3)
masalaning Grin funksiyasi

ko’rinishga ega ekanlngini aniqlaymiz.

Download 0.84 Mb.

Do'stlaringiz bilan baham:
1   ...   5   6   7   8   9   10   11   12   13




Ma'lumotlar bazasi mualliflik huquqi bilan himoyalangan ©fayllar.org 2024
ma'muriyatiga murojaat qiling