5. Muavr formulasi. Darajaga oshirish va
ildizdan chiqarish. Kompleks sonning trigonometrik ko’rinishini n-chi darajaga oshirish uchun moduli n-chi darajaga oshiriladi, argumentiga n soni ko’paytiriladi. Agar n natural son bo’lib, α=r(Cosφ+iSinφ) trigonometric ko’rinishdagi son bo’lsa, u holda
αn=rn(Cosnφ+iSinnφ)
o’rinli bo’ladi. Bu formulaga Muavr formulasi deyiladi.
Misol: (Cos300-iSin300)100=(Cos(-300)+iSin(-300))100=
= Cos(-30000)+iSin(-30000)= Cos1200 – iSin1200=
Kompleks sonni n-chi ildizdan chiqarish uchun moduli n-chi darajali ildizdan chiqariladi, argumenti esa n soniga bo’linadi.
ildiz quyidagi formula bilan topiladi:
,bunda n – natural son, k=0, 1, 2,3……n-1.
Misol: W=
k=0
k=1
4. Funksiya limiti. Cheksiz katta va kichik funksiyalar
1. 1-ta’rif. funksiya nuqtaning biror atrofida aniqlangan bo’lib, istalgan son uchun shunday son mavjud bo’lsaki, tengsizlikni qanoatlantiradigan barcha nuqtalar uchun tengsizlik bajarilsa, chekli son funksiyaning nuqtadagi limiti deb ataladi va quyidagicha yoziladi
(1)
Funksiya limitining ta’rifidan kelib chiqadiki cheksiz kichik bo’lganda ham cheksiz kichik bo’ladi.
2-ta’rif. funksiya, ning yetarlicha katta qiymatlarida aniqlangan bo’lib, istalgan son uchun shunday, mavjud bo’lsaki, tengsizlikni qanoatlantiruvchi barcha lar uchun tengsizlik bajarilsa, o’zgarmas son, funksiyaning dagi limiti deyiladi, va
(2)
bilan belgilanadi.
1-ta’rifda faqat yoki bo’lgan qiymatlar qaralsa, funksiyaning chap yoki o’ng limit tushunchasi kelib chiqadi va
, (3)
bilan begilanadi.
3-ta’rif. Limiti bo’lgan funksiyaga cheksiz kichik funksiya (ch. kich. f.) deyiladi.
4-ta’rif. Limiti yoki bo’lgan funksiyalarga cheksiz katta funksiya (ch. kat. f.) deyiladi va
(4)
bilan belgilanadi.
Limitning ta’rifidan kelib chiqadiki o’zgarmas miqdorning limiti o’ziga teng.
Do'stlaringiz bilan baham: |