N. A. Otaxanov
§-20. MATRISALAR ALGEBRASI
Download 1.4 Mb. Pdf ko'rish
|
dasturlash uchun masalalar toplami
- Bu sahifa navigatsiya:
- §-21. SONLI USULLAR. 1.
§-20. MATRISALAR ALGEBRASI.
1. O‘lchamlari mos ravishda k x m va m x l bo‘lgan A va B matrisalar berilgan bo‘lsin. AB ko‘paytmani hisoblang. 2. n tartibli A kvadrat matrisa berilgan. A 2 ni hisoblang. 3. n tartibli A va B kvadrat matrisa berilgan. AB-BA ni toping. 4. n tartibli A kvadrat matrisa berilgan bo‘lsin. B matrisa quyidagi formulalar bilan aniqlanadi: a) 1
+ =
i i b j i b) ⎪ ⎪
⎪⎪ ⎨ ⎧ + + ≤ − + = holda aks j i j i agar j i b j i , 1 1 , 1 1
c) ⎪ ⎪ ⎪ ⎩ ⎪⎪ ⎪ ⎨ ⎧ − + − = < − + = holda aks j i j i agar j i agar j i b j i , 1 1 , 0 , 1 2 2
Otaxanov N. A. Dasturlash uchun masalalar to’plami
65
AB matrisani toping. 5. n tartibli A kvadrat matrisa hamda n ta elementli b vektor berilgan bo‘lsin. Quyidagi vektorlarni aniqlang: 1) Ab; 2) A 2
6. n tartibli A kvadrat matrisa berilgan bo‘lsin. b vektor quyidagi formulalar bilan aniqlanadi: a) 2
2 + = i b i b) ⎪ ⎪
⎪⎪ ⎨ ⎧ − + = holda aks i juft i agar i b i , 1 , 2 1 2
Ab vektorni toping. 7. n tartibli A kvadrat matrisa hamda n ta elementli x va y vektorlar berilgan bo‘lsin. A(x+y) vektorni toping. 8. n tartibli A, B va C kvadrat matrisalar berilgan bo‘lsin. (A+B)C matrisani hisoblang. 9. n tartibli A va B kvadrat matrisalar berilgan. A(B-E)+C matrisani topnig. Bu yerda E-birlik matrisa, C ning elementlari . ...,
, 2 , 1 , ; 1 n j i j i c j i = + =
formula bilan aniqlanadi. 10. m tartibli A kvadrat matrisa hamda n – natural son berilgan bo‘lsin. A matrisaning n-darajasini tejamkorlik bilan hisoblang. Masalan: A 4 =(A
2 ) 2 . 11. 5-tartibli A kvadrat matrisa berilgan bo‘lsin. Uning 15 darajasini hisoblang. 12. m tartibli A kvadrat matrisa hamda n – natural son berilgan bo‘lsin. E+A+A
2 +...+A
n ifodaning qiymatini hisoblang. 13. mxn o‘lchovli A matrisa berilgan bo‘lsin. Transponerlangan A* matrisani toping.
14. mxn o‘lchovli A matrisa berilgan. AA* matrisani toping. 15. m tartibli A kvadrat matrisa berilgan bo‘lsin. Quyidagi (A+A*)/2 va (A-A*)/2 matrisalarni hisoblang. 16. Kvadrat matrisaning izi deb matrisaning bosh diagonali elementlarining yig‘indisiga aytiladi. n-natural son va m-tartibli A kvadrat matrisa berilgan bo‘lsin. A, A 2 , ..., A n matrisalarning izlarini toping. 17. Z kompleks sonli matrisa ikkita haqiqiy X va Y matrisalar orqali Z=X+iY ko‘rinishida ifodalanadi. Haqiqiy sonli A, B, C va D kvadrat matrisalar berilgan Otaxanov N. A. Dasturlash uchun masalalar to’plami
66
bo‘lsin. A+iB hamda C+iD kompleks matrisalar ko‘paytmasini, ya’ni X+iY=(A+ib)(C+iD) ifodaning qiymati bo‘lgan X va Y kvadrat matrisalarni toping. 18. A kvadrat matrisa berilgan bo‘lsin. A -1 , ya’ni A matrisaga teskari matrisani toping. 19. A kvadrat matrisa o‘ng uchburchak matrisa ko‘rinishida berilgan bo‘lib, unda (n+1)n/2 ta son 1 dan boshlab yozilgan. Matrisaning birinchi satrida dastlabki n-ta son, ikkinchi satrining ikkinchi elementidan boshlab keyingi n-1 ta son va hk. tarzida joylashgan. Shuningdek, n-elementli b vektor ham berilgan. Ab vektorning komponentalarini aniqlang.
]b) A(E+B 2 ) matrisani hisoblang. 21. Simmetrik va kvadrat matrisa bo‘lgan n tartibli A matrisaning o‘ng uchburchagi 19-masala shartidagi kabi (n+1)n/2 ta sondan iborat. Shunigdek, n- tartibli b vektor ham berilgan bo‘lsin. Ab vektorni hisoblang.
uchburchaklari 19-masala shartidagi kabi (n+1)n/2 ta sonlar yordamida to‘ldirilgan. a) AB matrisani toping; b) A 2
2 matrisani toping. §-21. SONLI USULLAR. 1. x 1 , x 2 , ...x n , y 1 , y 2 , ..., y n , t 1 , t 2 , ..., t m haqiqiy sonlar berilgan. (x 1 ≤ x 2 ≤...≤ x n , x 1 ≤ t i ≤ x n , i=1,2,..., m). y i sonlar f funksiyaning qiymatlari bo‘lsin, ya’ni y i =f(x i ), i=1, 2, ..., n. Chiziqli interpolyatsiya yordamida f(t 1 ), f(t
2 ), ..., f(t m ) sonlarni toping. 2. x 1 , x 2 , ...x n , y 1 , y 2 , ..., y n , haqiqiy sonlar berilgan. Bu sonlar uchun 1-masaladagi shartlar o‘rinli. Chiziqli interpolyatsiya yordamida f funksiyaning qiymatlarini argumentlarning x
shart o‘rinli bo‘lgan k-larning eng kattasi) qiymatlari uchun hisoblang.
masalani teng qadamlar uchun, ya’ni h=(x n -x 1 )/n bo‘lgan hol uchun yeching. 4. ε haqiqiy son berilgan bo‘lsin. Berilgan f(x)=0 tenglamalarning yechimlarini teng ikkiga bo‘lish usuli bilan ε aniqlikda toping. Yechim mavjud bo‘lgan oqaliq ma’lum. a)
]; 2 , 0 [ , 0 5 . 0 ) 5 . 0 ln( = − + + x x
Otaxanov N. A. Dasturlash uchun masalalar to’plami
67
b) ]; 1 . 1 , 1 [ , 0 2 . 0 5 = − − x x
c) ]; 5 . 1 , 1 [ , 0 2 , 1 2 , 0 2 , 0 2 3 = − − − x x x
d) ] 5 . 0 , 2 . 1 [ , 0 2 , 1 4 , 1 4 , 0 8 , 0 2 3 4 − − = − − − + x x x x ; e) ] 2 , 0 [ , 0 4 cos 3 3 sin 2 2 2 π = − x x .
vatarlar usuli bilan ε aniqlikda toping. Yechim mavjud bo‘lgan oqaliq berilgan. a)
]; 1 , 0 [ , 0 1 2 = − ⋅ x x
b) ]; 6 . 0 , 5 . 0 [ , 0 5 sin 2 = − x x
c) ]; 4 , 0 [ , 0 4 cos 3 3 sin 2 2 2 π = − x x
d) ]; 3 . 1 , 2 . 1 [ , 18 ) )( 4 ( 2 = − + − x x e e x
e) ]. 5 . 2 , 1 . 2 [ , 0 15 . 1 8 . 2 ) 5 . 0 ln( 3 . 1 2 = + − + − x x x
usuli bilan bir xil ε aniqlikda yeching. ε aniqlikka qaysi bir usulda tezroq erishiladi? 7. ε haqiqiy son berilgan bo‘lsin. Quyidagi f(x)=0 tenglamalarning yechimlarini urinmalar usuli bilan ε aniqlikda toping. Boshlang‘ich yechim berilgan. a) );
. 2 ( , 0 3 2 2 3 = − + − x x x
b) ) 67 . 4 ( , 0 = − x x tg ; c) ); 22 . 0 ( , 0 10 sin 8 . 1 4 = − x x
d) ); 11 ( , 0 000 10 75 3 2 4 − = − + − x x x
e) ). 31 . 2 ( , 0 20 6 2 3 = + − x x
iterasiya usuli bilan ε aniqlikda toping. Qavslar ichida boshlang‘ich yechim ko‘rsatilgan. a) );
( , 0 1 2 sin = − − x x
b) ); 11 . 0 ( , 0 1 4 2 3 = − + x x
c) ); 32 . 4 ( , 0 8 ln 8 5 = − −
x
Otaxanov N. A. Dasturlash uchun masalalar to’plami
68
d) ); 17 . 1 ( , 0 25 . 0 sin
= − − x x
e) ). 6 . 0 ( , 0 1 5 10 5 2 3 = − + +
x x
iteratiya usullarni qo‘llang. Barcha usullar uchun, ε ≤ ) (x f shart o‘rinli bo‘ladigan dastlabki
topilgandan so‘ng ishni tugating. ε sifatida navbatma- navbat 0.01, 0.001, 0.0001, 0.00001 sonlarini oling. Olingan natijalarni jadval ko‘rinishida ifodalang. Erishilgan natijalarga ko‘ra, bu usullari baholang. a) [
; 4 . 1 , 6 . 0 , 0 3 2 3 = − + x x
b) [ ] ; 1 . 1 , 9 . 0 , 0 2 . 0 3 = − − x x
c) [ ] ; 8 . 0 , 6 . 0 , 0 1 5 3 = − − x x
d) [ ] ; 93 . 2 , 9 . 1 , 0 5 2 3 = − − x x
e) [ ] . 1 , 0 , 0 1 2 3 4 = − − + x x x .
a) ⎪
⎪ ⎨ ⎧ = + + = + + = + + 14 10 2 2 13 10 2 12 10 3 2 1 3 2 1 3 2 1 x x x x x x x x x
b) ⎪ ⎩ ⎪ ⎨ ⎧ = + − = − + = − + 20 4 08 . 0 04 . 0 9 15 . 0 3 09 . 0 8 08 . 0 24 . 0 4 3 2 1 3 2 1 3 2 1
x x x x x x x x
c) ⎪ ⎪ ⎩ ⎪ ⎪ ⎨ ⎧ = + + + − = − + + = + − − = − + − 15 20 2 3 10 20 3 2 0 2 10 0 3 2 10 4 3 2 1 4 3 2 1 4 3 2 1 4 3 2 1 x x x x x x x x x x x x x x x x
d) ⎪ ⎪ ⎩ ⎪ ⎪ ⎨ ⎧ − = + − + = − + − = + − − = + − + 7 . 4 1 . 2 2 10 1 4 3 15 . 0 2 5 2 1 . 0 1 . 3 4 3 2 4 3 2 1 4 3 2 1 4 3 2 1 4 3 2 1 x x x x x x x x x x x x x x x x
Otaxanov N. A. Dasturlash uchun masalalar to’plami
69
e) ⎪ ⎪ ⎩ ⎪ ⎪ ⎨ ⎧ = − − + = − + + − = + − + = + − − 79 . 2 42 . 3 41 . 2 33 . 4 87 . 2 33 . 2 76 . 0 14 . 3 75 . 2 19 . 0 16 . 4 71 . 1 15 . 0 23 . 7 27 . 1 32 . 0 61 . 0 942 . 1 87 . 2 13 . 4 4 3 2 1 4 3 2 1 4 3 2 1 4 3 2 1 x x x x x x x x x x x x x x x x
sistemasining yechimlarini iterasiya usuli bilan ε aniqlikda toping. Buning uchun shunday
) ...,
, ( ) ( ) ( 1 ) ( m n m m x x x = vektorni topish kerakki, ε ≤ − − ) ( ) 1 ( max k i k i i x x , (i=1, ..., n) shart o‘rinli bo‘lsin. Bu yerda n sistemadagi noma’lmlar soni. a) ⎪ ⎩ ⎪ ⎨ ⎧ + − = + − = + − = 2 1 3 3 2 2 3 2 1 02 . 0 01 . 0 5 05 . 0 03 . 0 3 02 . 0 06 . 0 2 x x x x x x x x x
b) ⎪ ⎩ ⎪ ⎨ ⎧ − − = − − = − − = 2 1 3 3 1 2 3 2 1 2 . 0 2 . 0 4 . 1 1 . 0 2 . 0 3 . 1 1 . 0 1 . 0 2 . 1 x x x x x x x x x
c) ⎪ ⎪ ⎩ ⎪ ⎪ ⎨ ⎧ + − − − = − + − − = + − + − = + − = 75 . 0 005
. 0 1 . 0 15 . 0 5 . 0 05 . 0 15 . 0 1 . 0 5 . 0 2 . 0 1 . 0 1 . 0 3 . 0 2 . 0 1 . 0 3 2 1 4 4 2 1 3 4 3 1 2 4 3 2 1 x x x x x x x x x x x x x x x x
d) ⎪ ⎪ ⎩ ⎪ ⎪ ⎨ ⎧ − = − + − = + − = − − + − = 111 . 1 333 . 0 4 . 0 2 . 0 4 . 0 2 . 0 2 . 0 2 . 0 2 . 0 4 . 0 2 . 0 1 . 0 2 . 0 1 4 4 2 1 3 3 1 2 4 3 2 1 x x x x x x x x x x x x x
Leybnits formulalari yordamida hisoblang va olingan natijalarni taqqoslang. a)
∫ 2 1 2 x dx b) ∫ 9
x dx c) ∫ +
0 2 1 x dx
Otaxanov N. A. Dasturlash uchun masalalar to’plami
70
d) ∫ 3 0 sin π
x e) ∫ 8
3 3
x f) ∫ 7
dx x e x
Buning uchun integrallash oralig‘ini n
ta teng bo‘laklarga bo‘linadi va integralning taqribiy qiymati bo‘lgan S
yig‘indi hisoblanadi. Agar 1 +
n S uchun
ε ≤ − + i i n n S S 1 shart o‘rinli bo‘lsa ishni tugatish mumkin. Bu yerda n i i+1 . a) ∫ + 3 0 2 4 dx x b) ∫ +
, 1 0 3 1
dx c) ∫ +
0 4 1 x dx
d) ∫ − 2 0 4 cos dx x e x π e) ∫ − 4 0 2 sin 25 . 0 1 π
dx f) ∫ 5
2 sin
dx x e x
Agar Nyuton-Leybnits formulasi yordamida integralning aniq qiymatini hisoblay olsangiz, natijalarni taqqoslang. 13. Berilgan y′=f(x,y) oddiy differensial tenglamalarni yeching. Qavslar ichida x 0 - argumentning boshlang’ich qiymati, y 0 -funksiyaning x 0 nuqtadagi boshlang’ich qiymati, [a, b] - tenglama yechiladigan oraliq hamda h-qadamlar ko‘rsatilgan. a)
; ) 15 . 0 ], 2 . 5 , 7 . 1 [ , 3 . 5 , 7 . 1 ( , cos ' 0 0 = = = + = h y x y x y π
b) ; ) 3 . 0 ], 4 . 11 , 3 [ , 5 , 3 ( , 3 ' 0 0 3 2 = = = + = h y x y x y
c) ; ) 1 . 0 ], 6 . 4 , 8 . 1 [ , 5 . 4 , 8 . 1 ( , 2 ' 0 0 2 = = = + + =
y x y x e x y
d) ; ) 005 . 0 ], 6 . 0 , 1 [ , 5 . 0 , 1 ( ), 1 ln ( ' 0 0 = = = − = h y x x y x y y
e) ; ) 1 . 0 ], 1 , 0 [ , 0 , 0 ( , 3 ' 0 0 3 2 = = = + + = h y x y x y
d) ). 001
. 0 ], 1 , 0 [ , 1 , 0 ( , ' 0 0 2 = = = + = −
y x y e y y x
Download 1.4 Mb. Do'stlaringiz bilan baham: |
ma'muriyatiga murojaat qiling