Natural va butun sonlar
- §. Sonning butun va kasr qismi
Download 5.8 Mb.
|
§. Natural va butun sonlar-hozir.org
- Bu sahifa navigatsiya:
- 7 - §. Algebraik ifodalar
6 - §. Sonning butun va kasr qismi.
x haqiqiy sonning butun qismi deb, x dan oshmaydigan eng katta butun songa aytiladi. X sonining butun qismi [x] ko’rinishida yoziladi. Misol uchun [3,8] = 4, [-3,8] = -4 Har qanday x haqiqiy son uchun quyidagi tenglik o’rinlidir. [x] x <[x]+1 > X haqiqiy sonining kasr qismi deb, x va uning butun qismi ayirmasiga aytiladi. X sonining kasr qismi {x} ko’rinishida yoziladi. Har qanday x haqiqiy son uchun quyidagi tengliklar o’rinlidir. x = [x] + {x}, {x} = x - [x] Misol uchun {3,8} = 3,8-3 = 0,8 , {-3,8} = (-3,8) – (-4) =0,2 X haqiqiy sonning butun qismi doimo butun son bo’ladi: Ya’ni [x] Z X haqiqiy sonning kasr qismi doimo quyidagi shartni qanoatlantiradi. 0 {x}<1 > X haqiqiy son va n butun sonlar uchun quyidagi tenglik doimo qanoatlantiradi. [x+n] = [x] + n Misol uchun [3,8 + 4] = [3,8]+4 6-Mashq. 1.[x-1] + [x+3] = 12 tenglamani yeching 2. [x] – [x+2] +[x+4] = 18 tenglamani yeching. 3. [-2x] + [1-2x] + [3-2x] = 1 tenglamani yeching. 4. [x] = x tenglamani yeching. 5. [2x-1] = x+1 tenglamani yeching. 6. [ ] = tenglamani yeching. 7. [3x2 -x] = x+1 tenglamani yeching. 8. [ x2] = x tenglamani yeching. 9. Agar a sonini m soniga bo’lganda qoldiq r bo’lsa, [ ] = tenglik to’g’ri bo’lishini ko’rsating. 10.Agar nN shart o’rinli bo’lsa, tenglik to’g’ri bo’lishini ko’rsating. 11. Agar EKUB (a;4) = 1 shart o’rinli bo’lsa, tenglik to’g’ri bo’lishini ko’rsating. 12. [x] = 3x+1 tenglamani yeching. 13. [x]{x} = 1 tenglamani yeching. 14. {x} = 1-x tenglamani yeching. 15. x = 2[x] –{x} tenglamani yeching. 7 - §. Algebraik ifodalar Ko’phadlarning umumiy ko’rinishi P(x) = anxn +an-1xn-1+…….+a2x2 + a1x+a0 shaklda bo’ladi. Agar x=1 qiymatni P(x) ko’phadga qo’ysak P(1) = an1n +an-11n-1+…….+a2 12 + a1 1+a0 = an +an-1+an-2+……+a2 + a1 + a0 (1) ko’rinishda bo’ladi. Bundan shuni xulosa qilish mumkinki ko’phadning koeffitsientlari yig’indisini topish uchun P(1) ko’phadning qiymatini hisoblash kerak ekan. Faraz qilaylik agar n juft son bo’lsa, x=-1 qiymatda P(-1) = an(-1)n +an-1(-1)n-1+…….+a2 (-1)2 + a1 (-1)+a0 = an -an-1+an-2+……+a2 - a1 + a0 (2) shaklda bo’ladi. Agar yuqoridagi (1) va (2) ifodalarni qo’shib yuborsak P(1)+P(-1) = 2an + 2an-2 + ……+2a2 +2a0 (3) shakl hosil bo’ladi. Bu yuqoridagi (3) ifodani quyidagicha shaklda yozib olamiz. an + an-2 + ……+a2 +a0 = (P(1)+P(-1)) . Bu hosil bo’lgan tenglik P(x) ko’phaddagi x ning juft darajalari oldidagi koeffitsiyentlari yig’indisi deyiladi. Agar yuqoridagi (1) va (2) ifodalarni ayirib yuborsak P(1) – P(-1) = 2an-1 + 2an-3 +…..+2a3 +2a1 (4) tenglik hosil bo’ladi. Bu yuqoridagi (4) ifodani quyidagicha shaklda yozib olish mumkin. an-1 + an-3 +…..+a3 +a1 = (P(1)-P(-1)) . Bu hosil bo’lgan tenglik P(x) ko’phaddagi x ning toq darajalari oldidagi koeffitsiyentlari yig’indisi deyiladi. Biz n son juft bo’lgan holatdagi ko’phad bo’yicha ko’rib chiqdik. Yuqoridagi hosil bo’lgan natijaviy shartlar n toq son bo’lgan holatda ham o’rinli bo’ladi. Bunga o’zingiz mustaqil ravishda ishonch hosil qilib ko’ring. Sizga algebraik ifodalarning boshlang’ich nazariyasidan qisqa ko’paytirish formulalarining oddiy shakllari ya’ni (ab)2 va (ab)3 ko’phadlar yoyilmasi shaklda yozish ma’lumdir. Bu qisqa ko’paytirish formulalarni ko’phad yoyilmasi shaklda yozishda siz darajada qaysi son turgan bo’lsa, shuncha ko’paytuvchilarga ajratib so’ngra ko’paytmani hisoblash kerak edi. Ya’ni (ab)2 = (ab) (ab) = a22ab+b2 (ab)3 = (ab) (ab) (ab)= a33a2b+3ab2b3 Siz bu amallarni har doim takrorlamasligiz uchun oxirida hosil bo’lgan ko’phad yoyilmasini yod olishga majbur edingiz. Lekin siz bu yuqoridagi amallarni darajasi 2,3 yoki ko’pi bilan 4 bo’lgan holatda bajara olishingiz mumkin. Siz bilan birgalikda umumiy holatda (a+b)n ko’phad yoyilmasi shaklda yozishda 2 ta buyuk matematik Paskal va Nyutonning ishlarini ko’rib chiqamiz. Paskal aniqlagan usul. 1
1 2 1
4 6 4 1
1 5 10 10 5 1
2)Nyuton aniqlagan usul. Bu Nyuton tomonidan aniqlangan usul Nyuton binomi deyiladi. - binomial koeffitsiyent deyiladi va tenglik orqali hisoblanadi. Misol: (x+y)6 darajani Nyuton binomi usulida ochib chiqamiz. =x6+6x5y+15x4y2+20x3y3+15x2y4+6xy5+y6 Ko’phadlarni ko’paytuvchilarga ajrating. 1.1) x4+x2+1 1.2) x16-1 1.3) x8+x4+1 1.4) 2x4+x3+4x2+x+2 1.5) x4-12x3+47x2-60x 1.6) x5+x4+1 1.7) y2z2(y2-z2) + x2z2(z2-x2)+x2y2(x2-y2) 1.8) x(y2-z2)+y(z2-x2)+z(x2-y2) 1.9) (b-c)(b+c)2+(c-a)(c+a)2+(a-b)(a+b)2 1.10) a(b-c)3+b(c-a)3+c(a-b)3 1.11) x(y+z)(y2-z2) + y(z+x)(z2-x2)+z(y+x)(x2-y2) 1.12) x6+27 1.13) x4+3x2+4 1.14) (x+2)(x+3)(x+4)(x+5)-24 1.15) x4+4y4 1.16) 27x3-27x2+18x-4 1.17) (x+1)(x+3)(x+5)(x+7)+15 1.18) x3+y3+z3-3xyz 1.19) (x2+x+1)2 + 3x(x2+x+1)+2x2 1.20) x2y2-x2+4xy-y2+1 1.21) [a(x+y)+b(x-y)]2-[a(x-y)+b(x+y)]2 1.22) x6-y6+x4+x2y2+y4 1.23) 9x3+7x2-7x-9 1.24) 2x4+7x3-2x2-13x+6 1.25) x(x+1)(x+2)(x+3)+1 1.26) a4+b4+c4-2a2b2-2a2c2-2b2c2 1.27) (x2+x-1)(x2+3x-1)+x2 1.28) x4+5x2+9 1.29) (x+1)4 +2(x+1)3+x(x+2) 1.30) x3+9x2+11x-21 1.31) x2-3xy+2y2-2x+4y 1.32) x3+2y3-3xy2 1.33) (x+y)4 +x4+y4 1.34) x2y + xy2+x2z+xz2+y2z+yz2+2xyz 1.35) x5+x+1 1.36) x5+x4+1 1.37) a4(b-c) + b4(c-a)+c4(a-b) 1.38) (x-y)(y+z)(z+x)+(y-z)(z+x)(x+y)+(z-x)(x+y)(y+z) 1.39) x9 + 5x5+ x4+4x+4 2. Quyidagi darajalarni ko’phad shaklni aniqlang. 2.1) (x+2y)6 2.2) (x-2y)6 2.3) 2.4) 2.5) 2.6) 2.7) 2.8) 3. Berilgan binom yoyilmasida x qatnashmagan had koeffitsiyentini toping. 4. Agar binom yoyilmasida beshincha had x ga bog’liq bo’lmasa, n ning qiymatini aniqlang. 5. (1+x-3x2)2018 ifodada qavslarni ochib, o’xshash hadlari ixchamlagandan so’ng hosil bo’lgan ko’phadning koeffitsiyentlari yig’indisini toping. 6. (1+x-3x2)2018 ifodada qavslarni ochib, o’xshash hadlari ixchamlagandan so’ng hosil bo’lgan ko’phadning juft darajalari oldidagi koeffitsiyentlari yig’indisini aniqlang. 7. (1+x-3x2)2018 ifodada qavslarni ochib, o’xshash hadlari ixchamlagandan so’ng hosil bo’lgan ko’phadning toq darajalari oldidagi koeffitsiyentlari yig’indisini aniqlang. 8. (1+x)n +(1+x)n+1 yoyilmaning koeffitsiyentlari yig’indisi 1536 ga teng bo’lsa, x6 ning oldidagi koeffitsiyentini aniqlang. 9. (x+3)100 = a0+a1x +……+a100x100 shaklda bo’lsa, quyidagilarning qiymatini aniqlang. 9.1) a45 9.2) a0+a1 +……+a100 9.3) a0-a1+a2-a3+……+a100 2. Agar nol bo’lmagan a va b haqiqiy sonlar uchun ab=a-b shart o’rinli bo’lsa, ifodaning qiymatini toping. A)-2 B) C) D)2 10. ni soddalashtiring 12. c ni soddalashtiring 13. ni soddalashtiring 14. ni soddalashtiring (A) 1 B) 0 C) D) 15. ni soddalashtiring. A) x+y+z B)x+y-z C)0 D)1 16. ni soddalashtiring. A)1 B) C) D)
A) x2 B) y2 C)a2 D)2a2 18. ifodaning x = 6bo’lgandagiqiymatini toping.
19. ifodaning x = 10 bo’lgandagiqiymatini toping. A) 13/9 B) 7/5 C) 15/11 D) 4/3 20. ifodani x=1 bo’lgandagiqiymatini toping. A)1 B)0,5 C)2 D)3 21. ifodanisoddalashtiring. A)1 B)x C) x2018D) x2019 22. ifodanisoddalashtiring. A)1 B)xC)x2020D)x2019 23.Agar x2 + x+1=0 bo’lsa, x26 + x–26ifodaningqiymatini toping. A) -1 B)2 C)0 D)1 24. Agar x2 + x+1=0 bo’lsa, x29 + x–29 ifodaningqiymatinitoping. A) -1 B)2 C)0 D)1 25. Agar x2 + x+1=0 bo’lsa, x32 + x–32ifodaningqiymatini toping. A) 1 B)2 C)0 D)– 1 26. Agar x2 + x+1=0 bo’lsa, x99 + x–99ifodaningqiymatini toping. A) 1 B)2 C)0 D)–1 27. Agar x2 + x+1=0 bo’lsa, x3333 + x333 + x33 + x3 +2018 ifodaningqiymatini toping. A)2018 B)2020 C)2022 D)2014 28.(a2 + b2)(x2 + y2) = P2(x,y) + Q2(x, y) ayniyatbajarilsa, P(0;0) + Q(0; 0) ifodaningqiymatini toping. A) 0 B) a+b C) a–b D) 2a 29. (a2 + b2)(x2 + y2) = P2(x,y) + Q2(x,y)ayniyatbajarilsa, P(1;0) + Q(1; 0) ifodaningqiymatinitoping. A) 0B) a+b C) a– b D) 2a 30. (a2 + b2)(x2 + y2) = P2(x,y) + Q2(x, y) ayniyatbajarilsa, P(0; 1) + Q(0; 1) ifodaningqiymatini toping. A) 0B) a+bC) a-b D) 2a 31. (a2 + b2)(x2 + y2) = P2(x,y) + Q2(x, y) ayniyatbajarilsa, P(1;1) + Q(1; 1) ifodaningqiymatini toping. A) 0B) a+b C) a– b D) 2a 32. n ning qanday qiymatlarida 1+x2+x4+……+x2n-2 ifoda 1+x+x2+x3+……+xn-1 ifodaga qoldiqsiz bo’linadi? A) n=1 , n=3 B) n=2, n=4 C) barcha toq sonlarda D) barcha juft sonlarda 33. 1+x2+x4+……+x2n-2 ifoda 1+x+x2+x3+……+xn-1 ifodaga qoldiqsiz bo’linadigan n ning barcha natural qiymatlari yig’indisini toping. A) 4 B) 6 C) bunday qiymatlar mavjud emas D) cheksiz kattalikka ega 34. ayniyatdan B ni toping. A)2 B)3 C)1 D) -1 35. Yig’indini hisoblang. A)0 B)1 C) a+b+c D) aniqlab bo’lmaydi 36. Yig’indini hisoblang. A)0 B)1 C) a+b+c D) aniqlab bo’lmaydi 37. Yig’indini hisoblang. A)0 B)1 C) a+b+c D) aniqlab bo’lmaydi 38. Yig’indini hisoblang. A)0 B)1 C) a+b+c D) aniqlab bo’lmaydi 39. Yig’indini hisoblang. A)0 B)1 C) a+b+c D) aniqlab bo’lmaydi 40. Yig’indini hisoblang. A)0 B)1 C) a+b+c D) aniqlab bo’lmaydi 41. Yig’indini hisoblang. A)0 B)1 C) a+b+c D) aniqlab bo’lmaydi 42. P( ) = x2+x+1 shartniqanoatlantiruvchi P(x) ko’phadberilgan. P(3x) = 7 shartiniqanoatlantiradiganbarchax ningqiymatlariyig’indisini toping. A)–1/9 B) 1/9 C)–2/27 D) 2/27 43. P( ) = x2+x+1 shartniqanoatlantiruvchi P(x) ko’phadberilgan. P(3x) = 7 shartiniqanoatlantiradiganbarchax ningqiymatlariko’paytmasini toping. A)– 1/9 B)1/9 C)– 2/27 D) 2/27 44. P(x) = (1+2x–x2)4ko’phadning x7oldidagikoeffitsiyentinianiqlang. A)– 6 B)6 C)8 D)– 8 45. Agar 22007 – 22006 – 22005 + 22004 = k∙22004ifodaberilganbo’lsa, k ningqiymatini toping. A) 1 B)2 C)3 D)4 46. Agar x2 + y2 = 1 bo’lsa, 3x4 + 2y4 +5x2y2 + y2ningqiymatini toping. A) 2 B)3 C)9 D)10 47. Agar x2 + y2 = 1 bo’lsa, 9x4 + 6y4 +15x2y2 +3 y2ningqiymatini toping. A) 6 B)18C)9 D)10 48. Agar x2 + y2 = 1 bo’lsa, 6x4 + 4y4 +10x2y2 + 2y2ningqiymatini toping. A) 4B)6 C)9 D)10 49. Agar x2 + y2 = 1 bo’lsa, 12x4 + 8y4 +20x2y2 + 4y2ningqiymatini toping. A) 8 B)12 C)16 D)10 50. (a+1)4 + 4 (a+1)3 + 4a(a+ 2) ko’phadnechtaratsionalhadliko’paytuvchilargaajraladi. A) 3 B)2 C)4 D) ko’paytuvchilargaajralmaydi 51. (a+1)4 + 4 (a+1)3 + 4a(a+2)= P(x)∙Q(x) shaklidaberilganifodadan|P(x) – Q(x)|ningqiymatini toping. ( Bunda P(x) va Q(x) ratsionalhadliko’phadlar) A) 8a+6 B) 2a2 + 8a+6 C) 4 D) 8a+4 52. (a+1)4 + 4 (a+1)3 + 4a(a+2)= P(x)∙Q(x) shaklidaberilganifodadan P(x) +Q(x)ningqiymatini toping. ( Bunda P(x) va Q(x) ratsionalhadliko’phadlar) A) 2a2 + 8a+4 B) 2a2 + 8a+6C) 4 D) 8a+4 53.a3 + b3 +c3 +3a2(b+c)+3b2(a+c)+3c2(a+b)+6abc ifodani ko’paytuvchilarga ajrating. A) (a+b+c)(a2+b2+c2) B) (a+b+c)(a2+b2+c2-2ab-2bc-2ac) C) (a+b+c)3 D) ko’paytuvchilarga ajralmaydi 54. a3 + b3 +c3 +3a2(b+c)+3b2(a+c)+3c2(a+b)+6abc I fodani a=7, b=2, c=1 bo’lgandagi qiymatini toping. A) 540 B) 80 C) 1000 D) 900 55. P(x)= (2x2-2x+1)1999 (x3-2x2)2001 ko’phadni barcha koeffitsientlarini yig’indisini toping. A) 1 B)-1 C)0 D)2 56. P(x,y)=(5x2-xy-2y)12 ko’phadni barcha koeffitsientlarini yig’indisini toping. A)512 B)1024 C)2048 D)4096 57.Agar 3z+4(2─z)=8 bo’lsa, 1+ ifodaning qiymatini toping. A)2,5 B)3,5 C)1,5 D)4,5 58.(a+b+c)3─a3─b3─c3ifodaquyidagilarningqaysibirigabo’linmaydi? A) a+bB) a+b+c C) 3 D) barchasigabo’linadi 59.(a+b+c)3─a3─b3─c3ifodanechtako’paytuvchigaajraladi? A)3 B)5 C)4 D)6 60. Agar a:b:c=2:4:7 bo’lsa, (7a+b)/(c─2) ningqiymatini toping. A) aniqlabbo’lmaydi B)6 C)8 D)9 61. P(x) ko’phadni (x-1) ga bo’lganda qoldiq 2 chiqadi. Agar (x-2) ga bo’lganda qoldiq 1 bo’lsa, P(x) ko’phadni (x-1)(x-2) ga bo’lganda qoldiqni toping. A) 3-x B) x+3 C)x-1 D)x-2 62. M=x3-7x2+2 ko’phad M=(x+1)3+a(x+1)2+b(x+1)+c ko’phad ko’rinishida keltirilsa, a ning qiymatini toping. A)17 B)-6 C)-10 D) aniqlab bo’lmaydi 63. M=x3-7x2+2 ko’phad M=(x+1)3+a(x+1)2+b(x+1)+c ko’phad ko’rinishida keltirilsa, b ning qiymatini toping. A)17 B)-6 C)-10 D) aniqlab bo’lmaydi 64. M=x3-7x2+2 ko’phad M=(x+1)3+a(x+1)2+b(x+1)+c ko’phad ko’rinishida keltirilsa, c ning qiymatini toping. A)17 B)-6 C)-10 D) aniqlab bo’lmaydi 65. Soddalashtiring. 66. Soddalashtiring. 67. Soddalashtiring. 68. x, y va z haqiqiy sonlar bo’lsa, (x+y+z)3- (y+z-x)3-(z+x-y)3-(x+y-z)3 ifoda quyidagilardan qaysi biriga teng. A)36 xyz B)24 xyz C)12 x2y2z2 D) 12 xyz 69. x, y va z haqiqiy sonlar bo’lsa, (x-y)(y+z)(z+x)+(y-z)(z+x)(x+y)+(z-x)(x+y)(y+z) ifoda quyidagilardan qaysi biriga teng. A)(x-y)(y-z)(z-x) B) -(x-y)(y-z)(z-x) C) (x+y)(y+z)(z-x) D) (x+y)(y+z)(z+x) 70.x, y va z haqiqiy sonlar bo’lsa, P(x,y,z)=x3+y3+z3-3xyz ko’phad uchun quyidagilardan qaysi biri qanoatlantiradi. A) P(x,y,z)=P(x+y,y+z,z+x) B) P(x,y,z)=P(x-y,y-z,z+x) C) P(x,y,z)= P(x+y,y+z,z+x) D) P(x,y,z)=P(x+2y,y+2z,z+2x) 71.x, y va z haqiqiy sonlar bo’lsa, P(x,y,z)=x3+y3+z3-3xyz ko’phad uchun quyidagilardan qaysi biri qanoatlantiradi. A) P(x,y,z)= P(-x+y+z,x-y+z,x+y-z) B) P(x,y,z)=P(-x+y+z,x-y+z,x+y-z) C) P(x,y,z)= P(-x+y+z,x-y+z,x+y-z) D) P(x,y,z)=P(-2x+y+z,x-2y+z,x+y-2z) 72. a,b,c nol bo’lmagan haqiqiy sonlar uchun a+ shart qanoatlantirsa, ning qiymatini hisoblang. A)2 B) 3 C)1 D) aniqlab bo’lmaydi. 73. a,b,c nol bo’lmagan haqiqiy sonlar uchun a+ shart qanoatlantirsa, ning qiymatini hisoblang. A)2 B) 3 C)4 D) aniqlab bo’lmaydi. 74. ko’phadni ko’phadga bo’lgandagi qoldiqni toping. A) B) x+1 C)0 D) aniqlab bo’lmaydi 75. a va b o’zaro tub sonlarning nechta juftida kasr qisqaradi. A) 2 B) 1 C)bunday juftliklar mavjud emas D) aniqlab bo’lmaydi 76. Ifodani soddalashtiring. A) a+b+c B) a+b-c C) a+2b-2c D) 2a-2b+2c 77. kasr P2(x;y)+3Q2 (x;y) ko’rinishida yozilgan bo’lsa, P(x;y) ko’phadni aniqlang. A) B) C) D) shart yetarli emas 78. kasr P2(x;y)+3Q2 (x;y) ko’rinishida yozilgan bo’lsa, Q(x;y) ko’phadni aniqlang. A) B) C) D) shart yetarli emas
yozilgan bo’lsa, P(x;y) ko’phadni aniqlang. A) B) C) D) shart yetarli emas
yozilgan bo’lsa, Q(x;y) ko’phadni aniqlang. A) B) C) D) shart yetarli emas
yozilgan bo’lsa, P(x;y) ko’phadni aniqlang. A) B) C) D) aniqlab
A) B) C) D) aniqlab bo’lmaydi 83. kasr 5P2(x;y)-Q2 (x;y) ko’rinishida yozilgan bo’lsa, P(x;y) ko’phadni aniqlang. A) B) C) D) aniqlab
84. kasr 5P2(x;y)-Q2 (x;y) ko’rinishida yozilgan bo’lsa, Q(x;y) ko’phadni aniqlang. A) B) C) D) aniqlab bo’lmaydi 85. Agar x+y+z=0 bo’lsa, x3+y3+z3 ning qiymati quyidagilarning qaysi biriga doimo teng bo’ladi. A) xyz B) 3xyz C) 3x2y2z2 D) 0 86. (a+b+c)3-a3-b3-c3 ifoda nechta ratsional ko’paytuvchilarga ajraladi. A) 3 B)5 C)4 D)2 87. kasrni soddalash€tiring. A) 3 B) C)1 D) 88. a va b sonlar uchun shart qanoatlantisa, kasrning qabul qilishi mumkin bo’lgan qiymatlarini toping. A) 1 B)2 C)3 D) A va C 89. a va b sonlar uchun shart qanoatlantirsa, kasrning qabul qilishi mumkin bo’lgan qiymatlarini toping. A) 1 B) C) D)2 90. Agar x2 –x-1= 0 shart qanoatlantirsa, x3 - ning qiymatini toping. A) 4 B)3 C)2 D)1 91. Agar x2 –x-1= 0 shart qanoatlantirsa, x4 + ning qiymatini toping. A) 7 B)5 C)6 D)4 90. a4 – 47 a2+1=0 shart qanoatlantirsa, ( a>0) ning qiymatini toping. A) 2 B)3 C)4 D)1 92. Agar 16x2 + 144x + (a+ b) to’lakvadrathamda b – a =– 7shartlarbajarilsa, a ningqiymatni toping. A)165,5 B) 158,5 C)166 D)159 93. Agar 16x2 + 144x + (a + b) to’lakvadrathamda b – a = – 7shartlarbajarilsa, b ningqiymatni toping. A)165,5B) 158,5 C)166 D)159 94. ayniyatdana ningqiymatni toping. A)1 B)2 C)0 D) aniqlabbo’lmaydi 95. ayniyatdanb ningqiymatni toping.
96. ayniyatdanc ningqiymatni toping. A)1B)2C)0 D) aniqlabbo’lmaydi 97. Soddalashtiring. 98. Agar n juft son bo’lsa, S = 1-2+3-4+…+(-1)n+1n yig’indini hisoblang. A) –n B) C) D) 99. Agar n toq son bo’lsa, S = 1-2+3-4+…+(-1)n+1n yig’indini hisoblang. A) –n B) C) D) 100. Agar n juft son bo’lsa, S = 12 -22 +32 -42 +…+(-1)n+1n2 yig’indini hisoblang. A) B) C) D) 101. Agar n toq son bo’lsa, S = 12 -22 +32 -42 +…+(-1)n+1n2 yig’indini hisoblang. A) B) C) D) 102. Agar a, b va c haqiqiy sonlar uchun shart o’rinli bo’lsa, ifodaning qabul qilishi mumkin bo’lgan qiymatlaridan eng kattasini toping. A)0 B)-1 C)2 D) bir tomonlama aniqlanmaydi 103. . Agar a, b va c haqiqiy sonlar uchun shart o’rinli bo’lsa, ifodaning qabul qilishi mumkin bo’lgan qiymatlaridan eng kichigini toping. A)0 B)-1 C)2 D) bir tomonlama aniqlanmaydi 104. Ko’phadningozodhadini toping. f(x)=(3x2─1)30(4x+1)15─x30+25 A) 24 B) 25 C) 26 D) 125 105) Ko’phadningozodhadini toping. f(x)=(4x3+1)15(3x4+1)4+(x─3)2+17 A) 24 B) 33 C) 27 D) 17 106) Ko’phadningozodhadini toping. f(x)=(3x+1)3(4x+5)4(x+1)200+(x─1)19+19 A) 18 B) 20C) 643 D) 606 1> Download 5.8 Mb. Do'stlaringiz bilan baham: |
ma'muriyatiga murojaat qiling