Olympiad Combinatorics


Example 11 [IMO 2010, Problem 5]


Download 0.83 Mb.
Pdf ko'rish
bet12/21
Sana13.07.2023
Hajmi0.83 Mb.
#1660171
1   ...   8   9   10   11   12   13   14   15   ...   21
Bog'liq
bfc10368cc5f35cde9fbc045649a4ca8f1725f

Example 11 [IMO 2010, Problem 5]
Six boxes B
1
B
2
B
3
B
4
B
5
B
6
of coins are placed in a row. Each box 
initially contains exactly one coin. There are two types of allowed 
moves: 
Move 1: If B
k
with 1 ≤ k ≤5 contains at least one coin, you may 
remove one coin from B
k
and add two coins to B
k+1

Move 2: If B
k
with 1 ≤ k ≤ 4 contains at least one coin, you may 
remove one coin from B
k
and exchange the contents (possibly 
empty) of boxes B
k+1
and B
k+2
.
Determine if there exists a finite sequence of moves of the allowed 
types, such that the five boxes B
1
, B
2
, B
3
, B
4
, B

become empty, 
while box B
6
contains exactly 2010
20102010
coins.
Note: a
bc 
= a
(bc) 
Answer:
Surprisingly, the answer is yes. Let A = 2010
20102010
. We denote by 
(a
1
a
2
, …, a
n
)  (a
1
’, a
2
’, …, a
n
’) the following: if some consecutive 
boxes have a
1
a
2
, …, a
n
coins respectively, we can make them have 
a
1
’, a
2
’, …, a
n
’ coins by a legal sequence of moves, with all other 
boxes unchanged.
Observations
a) Suppose we reach a stage where all boxes are empty, except 
for B
4
, which contains at least A/4 coins. Then we can apply 
move 2 if necessary until B
4
contains exactly A/4 coins, and 
then apply move 1 twice and we will be done. Thus reaching 
this stage will be our key goal. 


Chapter 1: Algorithms 
19 
b) Move 1 is our only way of increasing the number of coins. 
Since it involves doubling, we should look for ways of 
generating powers of 2. In fact, since A is so large, we should 
try to generate towers of 2’s (numbers of the form 2
22 
).  
 
Based on this, we construct two sub algorithms.

Download 0.83 Mb.

Do'stlaringiz bilan baham:
1   ...   8   9   10   11   12   13   14   15   ...   21




Ma'lumotlar bazasi mualliflik huquqi bilan himoyalangan ©fayllar.org 2024
ma'muriyatiga murojaat qiling