O’zbekiston raqamli tehnalogiyalar vazirligi muhammad al xorazmiy nomidagi


Download 108.14 Kb.
bet5/11
Sana13.05.2023
Hajmi108.14 Kb.
#1456100
1   2   3   4   5   6   7   8   9   10   11
Bog'liq
diyorbek algaritmlash mustAQIL ISH

Operator normalariga misollar


Spektral normaning xususiyatlari:

  1. Operatorning spektral normasi maksimalga teng yagona raqam bu operator.

  2. Spektral norma oddiy operator ga teng mutlaq qiymat maksimal modul o'z qiymati bu operator.

  3. Matritsani ko'paytirishda spektral norma o'zgarmaydi ortogonal (unitar) matritsa.
    1. Matritsalarning operator bo'lmagan normalari


Operator normalari bo'lmagan matritsa normalari mavjud. Matritsalarning operator bo'lmagan normalari tushunchasini Yu.I.Lyubich kiritgan va G.R.Belitskiy tomonidan o'rganilgan.

Operator bo'lmagan normaga misol


Misol uchun, ikki xil operator normalarini ko'rib chiqing ‖ A ‖ 1 (\displaystyle \|A\|_(1)) Va ‖ A ‖ 2 (\displaystyle \|A\|_(2)) qator va ustun normalari kabi. Yangi normani shakllantirish ‖ A ‖ = m a x (‖ A ‖ 1 , ‖ A ‖ 2) (\displaystyle \|A\|=max(\|A\|_(1),\|A\|_(2)). Yangi norma halqasimon xususiyatga ega ‖ A B ‖ ≤ ‖ A ‖ ‖ B ‖ (\displaystyle \|AB\|\leq \|A\|\|B\|), birlikni saqlaydi ‖ I ‖ = 1 (\displaystyle \|I\|=1) va operator emas.
    1. Normativlarga misollar

Vektor p (\displaystyle p)-norma


Ko'rib chiqish mumkin m × n (\displaystyle m\times n) matritsa o'lcham vektori sifatida m n (\displaystyle mn) va standart vektor normalaridan foydalaning:
‖ A ‖ p = ‖ v e c (A) ‖ p = (∑ i = 1 m ∑ j = 1 n | a i j | p) 1 / p (\displaystyle \|A\|_(p)=\|\mathrm ( vec) (A)\|_(p)=\left(\sum _(i=1)^(m)\sum _(j=1)^(n)|a_(ij)|^(p)\ o'ngda)^(1/p))

Frobenius normasi


Frobenius normasi, yoki evklid normasi uchun p-normaning alohida holatidir p = 2 : ‖ A ‖ F = ∑ i = 1 m ∑ j = 1 n a i j 2 (\displaystyle \|A\|_(F)=(\sqrt (\sum _(i=1)^(m)\sum _(j) =1)^(n)a_(ij)^(2)))).
Frobenius normasini hisoblash oson (masalan, spektral norma bilan solishtirganda). U quyidagi xususiyatlarga ega:
‖ A x ‖ 2 2 = ∑ i = 1 m | ∑ j = 1 n a i j x j | 2 ≤ ∑ i = 1 m (∑ j = 1 n | a i j | 2 ∑ j = 1 n | x j | 2) = ∑ j = 1 n | x j | 2 ‖ A ‖ F 2 = ‖ A ‖ F 2 ‖ x ‖ 2 2 . (\displaystyle \|Ax\|_(2)^(2)=\sum _(i=1)^(m)\chap|\sum _(j=1)^(n)a_(ij)x_( j)\right|^(2)\leq \sum _(i=1)^(m)\left(\sum _(j=1)^(n)|a_(ij)|^(2)\sum _(j=1)^(n)|x_(j)|^(2)\o'ng)=\sum _(j=1)^(n)|x_(j)|^(2)\|A\ |_(F)^(2)=\|A\|_(F)^(2)\|x\|_(2)^(2).)

  • Submultiplikativlik: ‖ A B ‖ F ≤ ‖ A ‖ F ‖ B ‖ F (\displaystyle \|AB\|_(F)\leq \|A\|_(F)\|B\|_(F)), chunki ‖ A B ‖ F 2 = ∑ i, j | ∑ k a i k b k j | 2 ≤ ∑ i , j (∑ k | a i k | | b k j |) 2 ≤ ∑ i , j (∑ k | a i k | 2 ∑ k | b k j | 2) = ∑ i , k | a i k | 2 ∑ k , j | b k j | 2 = ‖ A ‖ F 2 ‖ B ‖ F 2 (\displaystyle \|AB\|_(F)^(2)=\sum _(i,j)\left|\sum _(k)a_(ik) b_(kj)\right|^(2)\leq \sum _(i,j)\left(\sum _(k)|a_(ik)||b_(kj)|\right)^(2)\ leq \sum _(i,j)\left(\sum _(k)|a_(ik)|^(2)\sum _(k)|b_(kj)|^(2)\o'ng)=\sum _(i,k)|a_(ik)|^(2)\sum _(k,j)|b_(kj)|^(2)=\|A\|_(F)^(2)\| B\|_(F)^(2)).

  • ‖ A ‖ F 2 = t r ⁡ A ∗ A = t r ⁡ A A ∗ (\displaystyle \|A\|_(F)^(2)=\mathop (\rm (tr)) A^(*)A=\ mathop (\rm (tr)) AA^(*)), Qayerda t r ⁡ A (\displaystyle \mathop (\rm (tr)) A) - matritsa izi A (\displaystyle A), A ∗ (\displaystyle A^(*)) - Hermit konjugati matritsasi.

  • ‖ A ‖ F 2 = r 1 2 + r 2 2 + ⋯ + r n 2 (\displaystyle \|A\|_(F)^(2)=\rho _(1)^(2)+\rho _ (2)^(2)+\nuqtalar +\rho _(n)^(2)), Qayerda r 1 , r 2 , … , r n (\displaystyle \rho _(1),\rho _(2),\nuqtalar,\rho _(n)) - birlik raqamlar matritsalar A (\displaystyle A).

  • ‖ A ‖ F (\displaystyle \|A\|_(F)) matritsani ko'paytirishda o'zgarmaydi A (\displaystyle A) chapga yoki o'ngga ortogonal (unitar) matritsalar.

Download 108.14 Kb.

Do'stlaringiz bilan baham:
1   2   3   4   5   6   7   8   9   10   11




Ma'lumotlar bazasi mualliflik huquqi bilan himoyalangan ©fayllar.org 2024
ma'muriyatiga murojaat qiling