Предмет и методы патологической физиологии. Общие принципы и типы медико-биологических экспериментов. Моделирование болезней и патологических процессов. Примеры моделей. Значение патофизиологии для клиники
Download 1.99 Mb.
|
shpory-1 patshiz
- Bu sahifa navigatsiya:
- Стадия завершившейся гипертрофии и относительно устойчивой гиперфункции.
- Стадия постепенного истощения и прогрессирующего кардиосклероза
Увеличение массы сердца происходит вследствие утолщения каждого мышечного волокна, что сопровождается изменением соотношения внутриклеточных структур. Объем клетки при этом увеличивается пропорционально кубу линейных размеров, а поверхность — пропорционально их квадрату, что приводит к уменьшению клеточной поверхности на единицу массы клетки. Известно, что через поверхность клетки происходит ее обмен с внеклеточной жидкостью — поглощение кислорода, питательных веществ, выведение продуктов метаболизма, обмен воды и электролитов. В силу перечисленных изменений возникают условия для ухудшения снабжения мышечного волокна, особенно его центральных отделов.
Клеточная мембрана играет большую роль в проведении возбуждения и в сопряжении процессов возбуждения и сокращения, осуществляемом через тубулярную систему и саркоплазматический ретикулум. Поскольку рост этих образований при гипертрофии мышечного волокна также отстает, то создаются предпосылки для нарушения процессов сокращения и расслабления кардиомиоцитов: вследствие замедления выхода ионов кальция в миоплазму ухудшается сокращение, а в результате затруднения обратного транспорта ионов кальция в ретикулум — расслабление, иногда могут возникать локальные контрактуры отдельных кардиомиоцитов. При гипертрофии увеличение объема клетки происходит в большей степени, чем объема ядра. Способность ядра высокодифференцированной клетки к делению резко ограничена. При этом увеличиваются только линейные размеры ядер за счет увеличения числа хромосом, что сопровождается некоторым увеличением содержания ДНК. А так как роль ядра заключается в обеспечении белкового синтеза, а следовательно, и процессов восстановления внутриклеточных структур, то относительное уменьшение ядра может привести к нарушению синтеза белков и ухудшению пластического обеспечения клетки. В процессе развития гипертрофии масса митохондрий вначале увеличивается быстрее, чем масса сократительных белков, создавая условия для достаточного энергетического обеспечения и хорошей компенсации функции сердца. Однако в дальнейшем, по мере усугубления процесса, увеличение массы митохондрий начинает отставать от роста массы цитоплазмы. Митохондрии начинают работать с предельной нагрузкой, в них развиваются деструктивные изменения, снижается эффективность их работы, нарушается окислительное фосфорилирование. Это ведет к ухудшению энергетического обеспечения гипертрофированной клетки. Увеличение массы мышечных волокон зачастую не сопровождается адекватным увеличением капиллярной сети, особенно в случаях быстрого развития недостаточности сердца. Крупные венечные артерии также не обладают необходимым приспособительным ростом. Поэтому во время нагрузки ухудшается сосудистое обеспечение гипертрофированного миокарда. В гипертрофированном сердце нарушена структура вставочных дисков и z-полос, что имеет своим следствием изменение электрической активности миокарда, ухудшение координированности сокращения сердца в целом. При развитии гипертрофии миокарда в процесс обязательно вовлекается нервный аппарат сердца. Наблюдается усиленное функционирование внутрисердечных и экстракардиальных нервных элементов. Однако рост нервных окончаний отстает от роста массы сократительного миокарда. Происходит истощение нервных клеток; нарушаются трофические влияния, уменьшается содержание норадреналина в миокарде, что ведет к ухудшению его сократительных свойств, затруднению мобилизации его резервов. Следовательно, нарушается и регуляторное обеспечение сердца. Гипертрофированное сердце вследствие увеличения массы его сократительного и энергообеспечивающего аппарата способно длительное время выполнять значительно большую работу, чем сердце нормальное, сохраняя при этом нормальный метаболизм. Однако способность приспосабливаться к изменяющейся нагрузке, диапазон адаптационных возможностей у гипертрофированного сердца ограничены. Уменьшен функциональный резерв. Это делает гипертрофированное сердце в силу указанной выше несбалансированности внутриклеточных и тканевых структур более ранимым при различных неблагоприятных обстоятельствах. Длительная и интенсивная нагрузка на сердечное мышечное волокно ведет к его истощению и нарушению функции. При этом могут возникнуть нарушения сократительной функции мышечного волокна вследствие нарушения образования энергии митохондриями и нарушения использования энергии сократительным аппаратом. При разных формах недостаточности сердца один из этих патологических вариантов может преобладать, в частности при длительной гиперфункции сердца ведущим является нарушение использования энергии. При этом наряду с плохой сократимостью наблюдается затруднение расслабления мышечного волокна, возникновение мышечных локальных контрактур, а в дальнейшем — дистрофия и гибель кардиомиоцитов. Повышенная нагрузка неравномерно распределяется между различными группами мышечных волокон: более интенсивно функционирующие волокна быстрее выходят из строя, гибнут и замещаются соединительной тканью (кардиосклероз), а оставшиеся принимают на себя все более повышенную нагрузку. Кардиосклероз ведет к сдавлению кардиомиоцитов, изменению механических свойств сердца, еще большему ухудшению диффузии, углублению обменных нарушений. Считается, что при замене соединительной тканью 20—30% массы сердца его нормальная работа невозможна. Дистрофические изменения сердечной мышцы сопровождаются расширением полостей сердца, снижением силы сердечных сокращений — возникает миогенная дилатация сердца, сопровождающаяся увеличением остающейся во время систолы в полостях сердца крови и переполнением вен. Повышенное давление крови в полостях правого предсердия и отверстиях полых вен прямым действием на синусно-предсердный узел и рефлекторно (рефлекс Бейнбриджа) вызывает тахикардию, которая усугубляет обменные нарушения в миокарде. Поэтому расширение полостей сердца и тахикардия служат грозными симптомами начинающейся декомпенсации. При оценке биологического значения гипертрофии миокарда следует обратить внимание на внутреннюю противоречивость данного явления. С одной стороны, это весьма совершенный приспособительный механизм, который обеспечивает длительное выполнение сердцем повышенной работы в нормальных и патологических условиях, а с другой — особенности структуры и функции гипертрофированного сердца служат предпосылкой для развития патологии. Преобладание одной из сторон в каждом конкретном случае определяет особенности протекания патологического процесса. По динамике изменений обмена, структуры и функции миокарда в компенсаторной гипертрофии сердца выделяют три основные стадии (Ф. 3. Меерсон). 1. Аварийная стадия развивается непосредственно после повышения нагрузки, характеризуется сочетанием патологических изменений в миокарде (исчезновение гликогена, снижение уровня креатинфосфата, уменьшение содержания внутриклеточного калия и повышение содержания натрия, мобилизация гликолиза, накопление лактата) с мобилизацией резервов миокарда и организма в целом. В этой стадии повышены нагрузка на единицу мышечной массы и интенсивность функционирования структуры (ИФС)-, происходит быстрое, в течение недель, увеличение массы сердца вследствие усиленного синтеза белков и утолщения мышечных волокон. 2. Стадия завершившейся гипертрофии и относительно устойчивой гиперфункции. В этой стадии процесс гипертрофии завершен, масса миокарда увеличена на 100 — 120% и больше не прибавляется, ИФС нормализовалась. Патологические изменения в обмене и структуре миокарда не выявляются, потребление кислорода, образование энергии, содержание макроэргических соединений не отличаются от нормы. Нормализовались гемодинамические показатели. Гипертрофированное сердце приспособилось к новым условиям нагрузки и в течение длительного времени компенсирует ее. 3. Стадия постепенного истощения и прогрессирующего кардиосклероза характеризуется глубокими обменными и структурными изменениями, которые исподволь накапливаются в энергообразующих и сократительных элементах клеток миокарда. Часть мышечных волокон гибнет и замещается соединительной тканью, ИФС снова возрастает. Нарушается регуляторный аппарат сердца. Прогрессирующее истощение компенсаторных резервов приводит к возникновению хронической недостаточности сердца, а в дальнейшем — к недостаточности кровообращения. 4) Стресс – неспецифический нейроэндокринный компонент мобилизацион ответа целостного организма на любое предъявляемое требование. Стрессоры: -раздражители, реально угрожающие гомеостазу; например боль, гипоксия и тд. -раздражители, потенциально опасные - раздражители неожиданные или нарушающие стереотип. Стресс как нейроэндокринный процесс впервые описан канадским патофизиологом Г.Селье в 1936 году. Стадии 1. Стадия тревоги. Осуществляется выработка гипоталамических сигналов, запуск стресс(кортиколиберин, вазопрессин, симпатический нервный сигнал). Начинается продукция аденогипофизарных гормонов-регуляторов стресса (пропиомеланокортин и его производные, включая АКТГ) 2. Стадия резистентности. Формируется общий адаптационный синдром(ОАС). Организм насыщается глюкокортикоидами и другими кортикостероидными гормонами, а также катехоламинами. Увеличение т-та кислорода и энергосубстратов. В рез-те острого кнтринсулярного д-я стрессорных гормонов на метаболизм происх перераспределение энергетическ ресурсов в пользу орг и тк, располагающих инсулин-независим транспортёрами глю (ЦНС, миокард, диафрагм дых мышца, сами надпочечники, гонады, ретина и др). Мобилизуются эндогенные пути получения глю – гликогенолиз и глюконеогенез. При этом часть орг временно оказывается в состоянии энергетической депревации.(лим.орг, соед.тк, оп-двиг аппарат, полые орг жкт, сосудист ст и др) 3.При сильных и длительных стрессирующих возд-х или наличии недостаточности ф-ций гипоталамуса, гипофиза, надпочечников – функц ресурсы нейро-эндокрин ап могут быть превышены. Стресс доходит до ст истощения. – наступ необратим некробиотическ и апоптотические изменения. Стресс, приведший к ст истощения называется дистресс.Дистресс – фактор риска многих заболеваний, поражающих орг и тк, оказывающиеся при стрессе в услов энергодепривации(болезни нарушенной адаптации – атероск-з, гипертензия, вторичный иммунодефицит, ожирение, остеохондроз, артриты и др.) При норм тече ст истощении не наступает и после прекращения действия стрессора бывает фаза «физиологического выхода из стресса». Для её осуществления необходимы биорегуляторы(эндогенные опиаты, андрогены, инсулин идр.) Такое развитие событий называется эустресс. Модели острого стресса: - Модель Селье – на крысах, продлённая иммобилизация на сроки 6-72 часа при комнатной и понижен темп. Приводит к выражен стрессу, доходящему до ст истощения. Демонстрир явление дисстресса. Не адекватна реальн ситуации при остр стрессе у чел -Модель Дж.В.Мэйсона – на част-но обездвижен обезьянах, животные подвергаются действию слабого раздраж электротока через нерегулярные промежутки времени, но могут избегать действия электротока, обучаясь определённой интенсивности воздействия на управляющую ркоятку. тБолее адекватна стрессу у человека, допускает альтернативный выход из стрессав дистресс или эустресс. -Ротационная модель на мышах, вращением на граммофонном диске -Холодовая модель на грызунах, 5-ти минутным погружением в услов холода (-20 градусов) -Плавание в холл воде в течение 5 мин. Наиб действенная модель Практическая работа – течение кислородного голодания у мышей с искусственно изменённой антигипоксической резистентностью. (см протокол) Родовой стресс – стресс для н/р. Особенности заключаются в том, что у ребёнка вместо адреналина выделяется норадреналин, и у н/р имеется 4 зона коры надпочечников, кот вырабатывает фетальный андроген.(андрогены – эндогенные опиаты) 18 1) Тромбоциты имеют дисковидную форму, диаметр от 2 до 5 мкм, объем 5— 10 мкм3 (рис. 7.6). В тромбоците выделяют несколько зон: периферическую, золя-геля, внутриклеточных органелл. На наружной поверхности периферической зоны располагается покров толщиной до 50 нм, содержащий плазматические факторы свертывания крови, энзимы, рецепторы, необходимые для активации тромбоцитов, их адгезии (приклеивания к субэндотелию) и агрегации (приклеивания друг к другу). Download 1.99 Mb. Do'stlaringiz bilan baham: |
Ma'lumotlar bazasi mualliflik huquqi bilan himoyalangan ©fayllar.org 2024
ma'muriyatiga murojaat qiling
ma'muriyatiga murojaat qiling