Qilichev Aktam Qabul qildi: Kubayev S. T


Mashinani o'rganishning beshta qabilasi


Download 42.09 Kb.
bet2/8
Sana26.10.2023
Hajmi42.09 Kb.
#1725270
1   2   3   4   5   6   7   8
Bog'liq
Qlichev aktam 3

Mashinani o'rganishning beshta qabilasi

Mashinalarni o'rganish dasturiy ta'minotni ishlab chiqishning keyingi o'n yilligi uchun asosiy fanlardan biriga aylanish yo'lida. Korxonada ham, iste'mol bozorida ham mashinani o'rganish dasturiy ta'minot ilovalari ma'lumotlarni qanday izohlash va qayta ishlashni qayta tasavvur qilishga yordam beradi. Biroq, ko'pincha odamlar mashinani o'rganishni katta intizom deb atashadi, chunki aslida turli xil fikrlar maktablarini birlashtiruvchi umumiy mavzu.
Kompyuter fanlari tadqiqotchisi Pedro Domingos o'zining yaqinda chop etilgan "Magistr algoritmi " kitobida mashinani o'rganishda beshta asosiy fikrlar maktabiga asoslangan taksonomiyadan foydalanadi:






  • Symbolists: Mashina o'rganish amaliyotchilarining ushbu guruhi teskari deduksiya asosiga e'tibor qaratadi. Oldindan boshlash va xulosalar izlashning klassik modeli o'rniga, teskari chegirma binolar va xulosalar to'plamidan boshlanadi va bo'shliqlarni to'ldirish uchun orqaga qarab ishlaydi.

  • Aloqachilar: Mashinani o'rganishning ushbu kichik to'plami miyani qayta qurishga qaratilgan eng mashhurlaridan biridir. Konnektsion yondashuvning eng mashhur namunasi bugungi kunda biz "chuqur o'rganish" deb ataydigan narsadir. Yuqori darajada, bu yondashuv neyron tarmoqdagi sun'iy neyronlarni ulashga asoslangan. Ulanish usullari tasvirni aniqlash yoki mashina tarjimasi kabi sohalarda juda samarali.

  • Evolyutsionerlar: Mashinani o'rganish bo'yicha ushbu intizom ma'lumotlarni qayta ishlashda evolyutsiya jarayonida genomlar va DNK g'oyalarini qo'llashga qaratilgan. Aslini olganda, evolyutsion algoritmlar doimo rivojlanib boradi va noma'lum sharoit va jarayonlarga moslashadi.

  • Bayeschilar: Mashinani o'rganish bo'yicha yana bir taniqli guruh, Bayeschilar noaniqlikni ehtimollik xulosasi kabi usullardan foydalangan holda hal qilishga e'tibor qaratadilar. Vizyonni o'rganish va spamni filtrlash Bayes yondashuvi tomonidan hal qilinadigan klassik muammolardan biridir. Odatda, Bayes modellari gipotezani qabul qiladi va ba'zi natijalar ehtimoli yuqori bo'lishiga ishonib, "apriori" fikrlash turini qo'llaydi. Keyin ular ko'proq ma'lumotlarni ko'rganlari uchun gipotezani yangilaydilar.




  • Analogizatorlar: Ushbu mashinani o'rganish intizomi ma'lumotlar bitlarini bir-biriga moslashtirish usullariga qaratilgan. Eng mashhur analogizator modeli neyron tarmoq modellariga natijalar berishi mumkin bo'lgan "eng yaqin qo'shni" algoritmidir.

Mashinani o'rganish texnologiyalari beshta qabilani birlashtiradi Garchi har bir qabila mashinani o'rganish maydonida turli xil fikrlash maktabini ifodalasa ham, ular ko'pincha muammolarga turli burchaklardan hujum qilish uchun birlashtiriladi. Natijada, zamonaviy mashinani o'rganish platformalarining aksariyati beshta fikr maktabining algoritmlaridan foydalanadi, ular tez-tez mashinani o'rganishning mustahkam imkoniyatlarini ta'minlash uchun ularni birlashtiradi.


Download 42.09 Kb.

Do'stlaringiz bilan baham:
1   2   3   4   5   6   7   8




Ma'lumotlar bazasi mualliflik huquqi bilan himoyalangan ©fayllar.org 2024
ma'muriyatiga murojaat qiling