Reja: Aniq integral


Download 404.27 Kb.
bet1/6
Sana01.04.2023
Hajmi404.27 Kb.
#1318321
  1   2   3   4   5   6
Bog'liq
xaytmurod matem 16


Aniq integralni geometriya va mexanikaga tadbiqlari
Reja:

  1. Aniq integral

  2. Aniq integralni geometriyaga tadbiqlari

  3. Aniq integralni mexanikaga tadbiqlari

1. Figuralar yuzalarini Dekart koordinatalar sistemasida hisoblash.


a) Avvalgi o’tilgan mavzulardan ma’lumki, agar [a,b] kesmada funksiya bo’lsa u holda egri chiziq, OX o’qi va x=a hamda x=b to’gri chiziqlar bilan chegaralangan egri chiziqli trapetsiyaning yuzi
(4)
ga teng bo’ladi. Agar [a,b] kesmada bo’lsa, u holda aniq integral bo’ladi.
Absolyut qiymatiga ko’ra bu integralning qiymati ham tegishli egri chiziqli trapetsiyaning yuziga teng:
(4)

y


y=f(x)

0 a b x
1-rasm


Agar funksiya [a,b] kesmada ishorasini chekli son marta o’zgartirsa, u holda integralni butun [a,b] kesmada qismiy kesmada qismiy kesmachalar bo’yicha integrallar yig’indisiga ajratamiz.
bo’lgan kesmalarda integral musbat, bo’lgan kesmalarda integral manfiy bo’ladi. Butun kesma bo’yicha olingan integral OX o’qidan yuqorida va pastda yotuvchi yuzlarning tegishli algebraic yig’indisini beradi (1-rasm). Yuzlar yig’indisini odatdagi ma’noda hosil qilish uchun yuqorida ko’rsatilgan kesmalar bo’yicha olingan integrallar absolyut qiymatlari yig’indisini topish yoki
(4)
Integralni hisoblash kerak.
b) Agar egri chiziqlar hamda x=a va x=b to’g’ri chiziqlar bilan chegaralangan figuraning yuzini hisoblash kerak bo’lsa, u holda shart bajarilgan figuraning yuzi qo’yidagiga teng:
(5)
1-misol. Y=cosx, y=0 chiziqlar bilan chegaralangan figuraning yuzi hisoblansin, bunda (2-rasm)

y


S1 S3

0 S2 x


-1
2-rasm


Yechish.


da hamda da bo’lgani uchun


Demak. S=4(kv.birlik)
2-misol. y=x2+1 va y=3-x chiziqlar bilan chegaralangan figuraning yuzini hisoblang.
Yechish. Figurani yasash uchun avval ishbu sistemani yechib, chiziqlarnin kesishish nuqtalarini topamiz.
(3-rasm).
y
A



B


-2 0 1 2 x


3-rasm



Bu chiziqlar A(-2; 5) va B(1; 2) nuqtalarda keshishadi. U holda


g) Agar egri chiziqli trapetsiyaning yuzi tenglamalari parametric shaklda berilgan chiziq bilan chegaralangan bo’lsa, bunda bu tenglamalar [a, b] kesmadagi biror funksiyani aniqlaydi, bunda
U holda egri chiziqli trapetsiyaning yuzi formula bo’yicha hisoblanishi mumkin bo’ladi. Bu integralda o’zgaruvchini almashtiramiz:

Demak,
(6)
Bu formula chiziq parametric tenglamalar bilan berilganda egri chiziqli trapetsiyaning yuzini hisoblash formulasidir.
3-misol. x=accost, y=bsint ellips bilan chegaralangan sohaning yuzi hisoblansi.
Yechish. Ellipsning yuqori yarim yuzini hisoblab, uni 2 ga ko’paytiramiz.





Download 404.27 Kb.

Do'stlaringiz bilan baham:
  1   2   3   4   5   6




Ma'lumotlar bazasi mualliflik huquqi bilan himoyalangan ©fayllar.org 2024
ma'muriyatiga murojaat qiling