Reja: Matritsalar va ular ustida amallar


Download 1.78 Mb.
bet4/7
Sana22.03.2023
Hajmi1.78 Mb.
#1286646
1   2   3   4   5   6   7
Bog'liq
Matritsalar va ular ustida amallar2

Misol 1. 𝐴 matritsa berilgan:
2 βˆ’4 1
a) 𝐴 =βˆ’1 2; b) 𝐴 =1 βˆ’5 3.
1 3

1 βˆ’1 1
𝐴 matritsa aynimagan matritsa ekanligiga ishonch hosil qiling, 𝐴 matritsaga teskari π΄βˆ’1 matritsani toping va 𝐴 β‹… π΄βˆ’1 = π΄βˆ’1 β‹… 𝐴 = 𝐸 tengliklarning bajarilishini tekshiring.
a ) 𝐴 =βˆ’1 2matritsaning determinantini hisoblaymiz:
1 3
βˆ’1 2
𝑑𝑒𝑑 𝐴 == (βˆ’1) β‹… 3 βˆ’ 2 β‹… 1 = βˆ’5 β‰  0.
1 3

𝐴 matritsaning aynimagan matritsa ekanligiga ishonch hosil qildik. Endi algebraik to’ldiruvchilarni topamiz:
𝐴11 = 3, 𝐴12 = βˆ’1, 𝐴21 = βˆ’2, 𝐴22 = βˆ’1.

Teskari matritsani yoza olamiz:
βˆ’ 1 = βˆ’ 1
𝐴
5

  1. βˆ’ 2βˆ’3/5 2/5

=. βˆ’1 βˆ’11/5 1/5

𝐴 β‹… π΄βˆ’1 = π΄βˆ’1 β‹… 𝐴 = 𝐸
tengliklarning bajarilishini tekshirib ko’ramiz.
2
(βˆ’1) β‹… + 2 β‹…
51 0
== 𝐸;
20 1

1 β‹… + 3 β‹…
5
β‹… 2 +
βˆ’3/5 2/51 0
== 𝐸.
1 10 1
β‹… 2 +
5 5
1 βˆ’1 1
𝐴 matritsaning aynimagan matritsa ekanligiga ishonch hosil qildik. Endi algebraik to’ldiruvchilarni topamiz:
𝐴11 = βˆ’2, 𝐴12 = 2, 𝐴13 = 4, 𝐴21 = 3,
𝐴22 = 1, 𝐴23 = βˆ’2, 𝐴31 = βˆ’7, 𝐴32 = βˆ’5, 𝐴33 = βˆ’6.
βˆ’2 3 βˆ’7
Teskari matritsani yoza olamiz: π΄βˆ’1 = βˆ’ 2 1 βˆ’5 .

  1. βˆ’2 βˆ’6

𝐴 β‹… π΄βˆ’1 = π΄βˆ’1 β‹… 𝐴 = 𝐸 tengliklarning bajarilishini tekshirib ko’ramiz.
βˆ’2 3 βˆ’72 βˆ’4 1
π΄βˆ’1 β‹… 𝐴 = βˆ’2 1 βˆ’51 βˆ’5 3= 4 βˆ’2 βˆ’61 βˆ’1 1

βˆ’2 β‹… 2 + 3 β‹… 1 + βˆ’7 β‹… 1 βˆ’2 β‹… βˆ’4 + 3 β‹… βˆ’5 + βˆ’7 β‹… βˆ’1 βˆ’2 β‹… 1 + 3 β‹… 3 + βˆ’7 β‹… 1
= βˆ’2 β‹… 2 + 1 β‹… 1 + βˆ’5 β‹… 1 2 β‹… βˆ’4 + 1 β‹… βˆ’5 + βˆ’5 β‹… βˆ’1 2 β‹… 1 + 1 β‹… 3 + βˆ’5 β‹… 1 =
4 β‹… 2 + βˆ’2 β‹… 1 + βˆ’6 β‹… 1 4 β‹… βˆ’4 + βˆ’2 β‹… βˆ’5 + βˆ’6 β‹… βˆ’1 4 β‹… 1 + βˆ’2 β‹… 3 + βˆ’6 β‹… 1
βˆ’8 0 01 0 0
= βˆ’0 βˆ’8 00 1 0= 𝐸;
0 0 βˆ’80 0 1
Xuddi shu kabi 𝐴 β‹… π΄βˆ’1 = 𝐸 ekanligini ko’rsatish mumkin.

Matritsaning rangi tushunchasini kiritamiz. 𝐴 matritsada π‘˜ ta satrlar va π‘˜ ta usunlarni ajratamiz, bu yerda π‘˜ soni π‘š va 𝑛 sonlarining kichigidan ham kichik yoki teng (π‘˜ ≀ π‘šπ‘–π‘› π‘š, 𝑛 ). Ajratib olingan π‘˜ ta satrlar va π‘˜ ta usunlarning kesishmasida turgan elementlardan tuzilgan π‘˜ βˆ’tartibli determinant matritsadan yaralgan minor yoki determinant deyiladi. Masalan,
7 βˆ’1 4 5 1 8 1 3
4 βˆ’2 0 βˆ’6
matritsa berilgan bo’lsin.
π‘˜ = 2 bo’lganda
7 βˆ’11 3βˆ’1 58 14 5
,,
1 80 βˆ’6βˆ’2 βˆ’6βˆ’2 01 3
determinantlar berilgan matritsadan yaralgan determinantlardir.

𝐴 matritsadan yaralgan determinantlar ichidan noldan farqlilarini ajratib olamiz. Ana shu noldan farqli determinantlar tartibining eng kattasi 𝑨 matritsaning rangi deyiladi
(π‘Ÿπ‘Žπ‘›π‘”π΄ deb belgilanadi).
Agar 𝐴 matritsadan yaralgan π‘˜ βˆ’tartibli determinantlarning hammasi nolga teng bo’lsa, u holda π‘Ÿπ‘Žπ‘›π‘”π΄ < π‘˜ bo’ladi.

Download 1.78 Mb.

Do'stlaringiz bilan baham:
1   2   3   4   5   6   7




Ma'lumotlar bazasi mualliflik huquqi bilan himoyalangan ©fayllar.org 2024
ma'muriyatiga murojaat qiling