Reja: Matritsalar va ular ustida amallar
Download 1.78 Mb.
|
Matritsalar va ular ustida amallar2
Misol 1. π΄ matritsa berilgan:
2 β4 1 a) π΄ =β1 2; b) π΄ =1 β5 3. 1 3 1 β1 1 π΄ matritsa aynimagan matritsa ekanligiga ishonch hosil qiling, π΄ matritsaga teskari π΄β1 matritsani toping va π΄ β π΄β1 = π΄β1 β π΄ = πΈ tengliklarning bajarilishini tekshiring. a ) π΄ =β1 2matritsaning determinantini hisoblaymiz: 1 3 β1 2 πππ‘ π΄ == (β1) β 3 β 2 β 1 = β5 β 0. 1 3 π΄ matritsaning aynimagan matritsa ekanligiga ishonch hosil qildik. Endi algebraik toβldiruvchilarni topamiz: π΄11 = 3, π΄12 = β1, π΄21 = β2, π΄22 = β1. Teskari matritsani yoza olamiz: β 1 = β 1 π΄ 5 β 2β3/5 2/5 =. β1 β11/5 1/5 π΄ β π΄β1 = π΄β1 β π΄ = πΈ tengliklarning bajarilishini tekshirib koβramiz. 2 (β1) β + 2 β 51 0 == πΈ; 20 1 1 β + 3 β 5 β 2 + β3/5 2/51 0 == πΈ. 1 10 1 β 2 + 5 5 1 β1 1 π΄ matritsaning aynimagan matritsa ekanligiga ishonch hosil qildik. Endi algebraik toβldiruvchilarni topamiz: π΄11 = β2, π΄12 = 2, π΄13 = 4, π΄21 = 3, π΄22 = 1, π΄23 = β2, π΄31 = β7, π΄32 = β5, π΄33 = β6. β2 3 β7 Teskari matritsani yoza olamiz: π΄β1 = β 2 1 β5 . β2 β6 π΄ β π΄β1 = π΄β1 β π΄ = πΈ tengliklarning bajarilishini tekshirib koβramiz. β2 3 β72 β4 1 π΄β1 β π΄ = β2 1 β51 β5 3= 4 β2 β61 β1 1 β2 β 2 + 3 β 1 + β7 β 1 β2 β β4 + 3 β β5 + β7 β β1 β2 β 1 + 3 β 3 + β7 β 1 = β2 β 2 + 1 β 1 + β5 β 1 2 β β4 + 1 β β5 + β5 β β1 2 β 1 + 1 β 3 + β5 β 1 = 4 β 2 + β2 β 1 + β6 β 1 4 β β4 + β2 β β5 + β6 β β1 4 β 1 + β2 β 3 + β6 β 1 β8 0 01 0 0 = β0 β8 00 1 0= πΈ; 0 0 β80 0 1 Xuddi shu kabi π΄ β π΄β1 = πΈ ekanligini koβrsatish mumkin. Matritsaning rangi tushunchasini kiritamiz. π΄ matritsada π ta satrlar va π ta usunlarni ajratamiz, bu yerda π soni π va π sonlarining kichigidan ham kichik yoki teng (π β€ πππ π, π ). Ajratib olingan π ta satrlar va π ta usunlarning kesishmasida turgan elementlardan tuzilgan π βtartibli determinant matritsadan yaralgan minor yoki determinant deyiladi. Masalan, 7 β1 4 5 1 8 1 3 4 β2 0 β6 matritsa berilgan boβlsin. π = 2 boβlganda 7 β11 3β1 58 14 5 ,, 1 80 β6β2 β6β2 01 3 determinantlar berilgan matritsadan yaralgan determinantlardir. π΄ matritsadan yaralgan determinantlar ichidan noldan farqlilarini ajratib olamiz. Ana shu noldan farqli determinantlar tartibining eng kattasi π¨ matritsaning rangi deyiladi (πππππ΄ deb belgilanadi). Agar π΄ matritsadan yaralgan π βtartibli determinantlarning hammasi nolga teng boβlsa, u holda πππππ΄ < π boβladi. Download 1.78 Mb. Do'stlaringiz bilan baham: |
Ma'lumotlar bazasi mualliflik huquqi bilan himoyalangan ©fayllar.org 2024
ma'muriyatiga murojaat qiling
ma'muriyatiga murojaat qiling