Reja: Matritsalar va ular ustida amallar
M atritsalar va ular ustida amallar
Download 1.78 Mb.
|
Matritsalar va ular ustida amallar2
- Bu sahifa navigatsiya:
- M atritsalar va ular ustida amallar
M atritsalar va ular ustida amallarπ΄π΅ koβpaytmaning mavjudligidan π΅π΄ koβpaytmaning mavjudligi kelib chiqmaydi. π΄π΅ va π΅π΄ koβpaytmalar mavjud boβlgan taqdirda ham, odatda (koβp hollarda), π΄π΅ va π΅π΄ koβpaytmalar bir-biriga teng boβlmaydi: π΄π΅ β π΅π΄. Agar π΄π΅ = π΅π΄ boβlsa, u holda π΄ va π΅ matritsalar oβzaro oβrin almashinuvchi (kommutativ) matritsalar deyiladi. Maβlumki, har doim π΄π΅ πΆ = π΄ π΅πΆ tenglik oβrinli. M atritsalar va ular ustida amallarMisol 1. π΄π΅ va π΅π΄ koβpaytmalarni toping. 4 β5 8 π΄ =, 1 3 β1 β1 5 π΅ =β2 β3. 4 π΄π΅ koβpaytmani topamiz: β1 5 β5 8 π΄π΅ =β2 β3= 1 3 β1 4 β (β1) + (β5) β (β2) + 8 β 3 4 β 5 + (β5) β (β3) + 8 β 430 67 ==. 1 β (β1) + 3 β (β2) + (β1) β 3 1 β 5 + 3 β (β3) + (β1) β 4β10 β8 M atritsalar va ular ustida amallarπ΅π΄ koβpaytmani topamiz: β1 5 4 β5 8 π΅π΄ =β2 β3 1 3 β1 3 4 (β1) β 4 + 5 β 1 (β1) β (β5) + 5 β 3 (β1) β 8 + 5 β (β1) =(β2) β 4 + (β3) β 1 (β2) β (β5) + (β3) β 3 (β2) β 8 + (β3) β (β1) 3 β 4 + 4 β 1 3 β (β5) + 4 β 3 3 β 8 + 4 β (β1) 1 20 β13 =β11 1 β13. 16 β3 20 Shunday qilib, π΄π΅ β π΅π΄ ekan. M atritsalar va ular ustida amallarMisol 2. π΄π΅ va π΅π΄ koβpaytmalarni toping. 3 51 β5 π΄ =, π΅ =. 1 2β1 2 Hisoblaymiz: 3 51 β53 β 1 + 5 β (β1) 3 β (β5) + 5 β 2β2 β5 π΄π΅ ===, 1 2β1 21 β 1 + 2 β (β1) 1 β (β5) + 2 β 2β1 β1 1 β53 51 β 3 + (β5) β 1 1 β 5 + (β5) β 2β2 β5 π΅π΄ ===. β1 21 2(β1) β 3 + 2 β 1 (β1) β 5 + 2 β 2β1 β1 Shunday qilib, π΄π΅ = π΅π΄ ekan. 3 2 π΄ =β1 1, π΅ = 1 5 β 1 β6 1 , πΆ =2. β1 4 Koβpaytmalarni hisoblaymiz: 5 3 β2 π΄π΅ =β1 9 β2 9 3 β3 β 7 π΄π΅ πΆ = 11 , β15 β 10 π΅πΆ = , π΄ 1 ya`niπ΄π΅πΆ = π΄π΅πΆ. β 7 π΅πΆ = 11 , β15 π β tartibli kvadrat matritsa berilgan boβlsin: π11 π12 . . . π1π π΄ =π.21. . π.22. . .. .. .. π.2.π. ππ1 ππ2 . . . πππ Agar π΄ matritsaning determinanti noldan farqli π11 π12 . . . π1π πππ‘ π΄ =π.21. . π.22. . .. .. .. π.2.π.β 0 ππ1 ππ2 . . . πππ boβlsa, π΄ matritsa aynimagan matritsa deyiladi. Agar πππ‘ π΄ = 0 boβlsa, π΄ matritsa aynigan matritsa deyiladi. π΄ matritsaga teskari matritsa π΄β1 koβrinishda belgilanadi. Teskari matritsa tushunchasi faqat aynimagan kvadrat matritsalarga taalluqlidir. Ushbu 1 0 . . . 0 0 1 . . . 0 πΈ = . . . . . . . . . . . . 0 0 . . . 1 kvadrat matritsa birlik matritsa deyiladi. Ushbu π11 π21 . . . ππ1 π΄π =π.12. . π.22. . .. .. .. π.π2. . π1π π2π . . . πππ kvadrat matritsa π΄ matritsaga nisbatan transponirlangan matritsa deyiladi. Aynimagan π΄ matritsa berilgan boβlsin. Agar π΄ β π΄β1 = π΄β1 β π΄ = πΈ boβlsa, π΄β1 matritsa π΄ matritsaga teskari matritsa deyiladi. π΄ matritsaga teskari π΄β1 matritsani topish formulasi: π΄11 π΄21 . . . π΄π1 π΄β1 =π΄12 π΄22 . . . π΄π2, . . . . . . . . . . . . π΄1π π΄2π . . . π΄ππ bu yerda π΄ππ β berilgan π΄ matritsaga nisbatan transponirlangan π΄π matritsaning algebraik toβldiruvchilari. Download 1.78 Mb. Do'stlaringiz bilan baham: |
Ma'lumotlar bazasi mualliflik huquqi bilan himoyalangan ©fayllar.org 2024
ma'muriyatiga murojaat qiling
ma'muriyatiga murojaat qiling