ScienceDirect Available online at
particles still has diameters less than 100 nm
Download 119.6 Kb. Pdf ko'rish
|
ZnO 2
particles still has diameters less than 100 nm. The size distribution of these nanoparticles is shown in Figure(6), The distribution seems to be symmetric about 22 nm, The particles of sizesis in the range of 5 - 45 nm in diameter for this specimen. Fig.6. the particle-size distribution of the nano-sized ZnO 3.3. Electrical measurement The Electrical characteristic (I-V)was measuredby using V-I source/ measuring unit(MEGOHMMETER-M1500P (1500 V,20 mA)),an Ampere meter and a Voltmeter. A summary of the electrical properties was listed in Table2. The breakdown voltage was measured at V(1mA) and the leakage current (I L ) was measured at 0.75V(1mA). The non-linearity coefficient defined by empirical formula: I=KV α .................................................................(2) Where I is the current, V is the applied electric Voltage; α is the nonlinearity coefficient and K is constant. howeverNon-linearity coefficient determined by the formula: ) 1 log 2 /(log ) 1 log 2 (log V V I I ..............(3) Khalaf AL ABDULLAH, Sahar AWDE/ Energy Procedia 00 (2017) 000–000 5 and it is identified in the range of 1.0 mA to 10 mA. Where V1 and V2 are the electric voltage at I1=1 mA and I2=10 mA, respectively. The voltage gradient E(1mA) is calculated by E(1mA)= V(1mA)/h, where h is the sample thickness. The breakdown voltage per grain boundary (Vgb), given by the equation (Anas et al. 2010): E = Vgb/d, where d is the average of grain size[14-16], and equal to 4um in this study after sintering. Table 2. Summary of the electrical properties of pure ZnO Varistor. Nonlinearity coefficient(α) Breakdown Voltage Voltage(V) gradient(V/mm) Leakage current (I L ) (uA) The breakdown voltage per grain boundary (Vgb) (V) 30 450 225 100 0.9 Figure (7) shows the current as a function of the electric voltage for theSample. The curve can be divided into two regions: the first one (the ohmic region) is known as a high resistance region and the second one (the non-ohmic region) is known as a very low resistance region. The electrical properties (breakdown voltage, non-linear coefficient,etc) are typically related to grain size. A smaller grain size can effectively increase nonlinearity coefficient α and the breakdown voltage because the number of grain boundaries per unit thickness of varistor increases[16]. Fig.7.( I-V) characteristic of pureZnO Varistor prepared at 1050 o C Fig.8. (I-V) Experimental characteristics of pure ZnO Varistor at various temperatures Khalaf AL ABDULLAH et al. / Energy Procedia 119 (2017) 565–570 569 4 Khalaf AL ABDULLAH, Sahar AWDE/ Energy Procedia 00 (2017) 000–000 Figure(5) shows the synthesized AFM image of ZnO nanoparticles in 2-dimension. Data are collectedover a selected area of the surface of the sample,Areas ranging from approximately (0-7) microns and (0-2) microns in width.Most of the particles appear spherical in shape, however some elongated particles and moderately agglomerated particles are also present as shown in the AFM images. see Fig(5.a) andFig(5.b). Fig.5.AFM images of the prepared ZnO nanoparticle in 2D, (a)7microns area ; (b)2 microns area Agglomeration is understood to increase linearly with annealing temperature and hence some degree of agglomeration at this temperature (500 o C) appears unavoidable [7]. But as noticed, most of the agglomerated Download 119.6 Kb. Do'stlaringiz bilan baham: |
Ma'lumotlar bazasi mualliflik huquqi bilan himoyalangan ©fayllar.org 2024
ma'muriyatiga murojaat qiling
ma'muriyatiga murojaat qiling