Ш. Ш. Файзиева институтционал иқтисодиёт фанидан маърузалар матни
Ўйинлар назарияси таянч моделларининг таснифи
Download 0.84 Mb.
|
Институтционал
- Bu sahifa navigatsiya:
- Такрорлаш учун саволлар
3. Ўйинлар назарияси таянч моделларининг таснифи
Ўйинлар назарияси учун бир неча таянч моделлар мавжуд [40]. Ушбу моделлар Нэш бўйича мувозанат нуқталарининг сони билан ва уларнинг Штакельберг бўйича ва Парето бўйича мувозанат нуқталарига мос келиши ёки мос келмаслиги билан фарқ қилади. Умумий кўринишда моделлар типологияси ўйинлар назариясида фойдаланиладиган иккала иштирокчиси учун қуйидаги кўринишга эга бўлади:9
И модел. Масалан, иккита талаба томонидан учрашув жойининг танланиши вазиятини акс эттиради. Улардан ҳар бирини ё кутубхонада ёки буфетда топиш мумкин. Буфетдаги учрашув иккала талабага ҳам фойдалиликни таъминлаши назарда тутилади: улар кофе ёки бирор хил шарбат устида суҳбат ўтказишлари мумкин.
Бу ўйин унинг ёрдамида «фокал нуқта» - иккала талаба томонидан ўзлари танлайдиган учрашув жойи ғояси акс эттирилиши туфайли қизиқарли. Агар иккаласи ҳам бир-бирини яхши билса, улар бир бирини топиши мумкин бўлган жойни тахмин қилиш унчалик қийинчилик туғдирмайди. «Фокал нуқта» буфет бўлиши эҳтимоли кўпроқ. ИИ модел. Эр-хотин ўртасидаги қатъий шаклдаги кескин вазиятни намоён этади. Эр-хотин иккита муқобил – концертга ёки футболга бориш вариантидан бирини танлаш йўли билан кечки вақтни қандай ўтказишни ҳал этади. Ҳар бирининг фикри равшан: хотин - концертга, эр - футболга боришни афзал кўради. Бунда эр-хотин кечки вақтни биргаликда ўтказишдан ҳордиқ чиқаришни анча паст баҳолашади.
Ўйин шуниси билан қизиқки, бу ерда иккала иштирокчида ҳам устун стратегия мавжуд (£) «концертга бориш» – хотин учун, «футбол матчига бориш» - эр учун. ИИИ модел. «Маҳбуслар дилеммаси» муҳокамаси.
ИВ модел. Эр-хотин ўртасидаги аввалги қаттиқ шаклдаги ихтилофли вазиятнинг юмшоқроқ варианти. Қатъий шаклдаги ихтилофли вазиятнинг юмшоқ шаклдан фақат битта фарқи мавжуд, эр-хотин биргаликда ўтказилган кечки вақтдан кўрилган манфаатни юқори баҳолашади:
В модел. Ушбу модель қуролсизланиш муаммосини ифодалайди. А мамлакат Б мамлакатга нисбатан уруш бошлаш масаласини ҳал этади, Б мамлакат эса қуролланиш ёки қуролсизланиш вариантларидан бирини танлайди. Муаммо шундан ибортки, қуролсизланган Б мамлакт тажоввузкор А мамлакат учун осон ўлжага айланади, қуролланган мамлакат эса тажоввузга тажоввуз билан жавоб қайтариши мумкин:
ВИ модел. Бирон-бир романни ўқиш тўғрисида қарор қабул қилиш билан боғлиқ оғир маънавий танлаш вазиятини акс эттиради. Биринчи китобхон, агар у китобни ўқий олмаса, афсус чекади, лекин, агар у ушбу романни барибир ўқишни бошласа, ўзи бундан уялади. Иккинчи китобхон – мунофиқнинг фикрига кўра, китобни ўқишни ҳаммага тақиқлаш лозим, лекин агар романни ўқиш керак бўлса, у ҳолда фақат унинг ўзи ўқиши лозим:
ВИИ модел қуйидаги ўйин кўринишида амалга оширилади. Ҳар бир ўйинчи ўйин бошида 2 долларга эга ва ушбу сумманинг ярмини қутига солиб қўяди. Сўнгра қути биринчи ўйинчига топширилади, у ушбу суммани ўзида қолдириши ёки қудуққа ташлаб юбориши мумкин. Иккинчи иштирокчи биринчи ўйинчининг хатти-ҳаракатини олдиндан айтиб бериши лозим ва, агар у бунинг уддасидан чиқса, 1 доллар олади. Бундан ташқари, агар қути қудуққа ташланмаса, ўйинчилар ундаги суммани ўзаро бўлиб олишади:
ВИИИ моделда давлат билан сармоядор ўртасидаги ўзаро муносабатлар ифодаланади. Сармоядорда ҳаракатларнинг иккита варианти мавжуд – мамлакатда инвестицияни амалга ошириш ёки оширмаслик. Давлат эса инвестициялардан олинадиган даромадларга юқори солиқ белгилаши ёки солиқни умуман бекор қилиши мумкин:
Юқорида изоҳланган моделларни кўриб чиқиш индивидлар ўртасидаги ўзаро ҳамкорлик жараёнида юзага келадиган қатор муаммоларни аниқлаш ва таҳлил қилиш имконини беради: - мувофиқлаштириш муаммоси Нэш бўйича иккита нуқта мавжуд бўлган ҳолларда пайдо бўлади (И, ИВ моделлар). Мувофиқлаштириш муаммосининг ҳал этилиши қўшимча институционал шарт-шароитлар жорий этилиши, «фокал нуқталар» ёки келишувлар мавжуд бўлишини талаб қилади. Масалан, эр-хотиннинг қизиқишлари бир жойдан чиққан ҳолларда, улар ўз ҳаракатларини мувофиқлаштириши анча осонлашади;
бирга бўла олишлик муаммоси Нэш бўйича мувозанат мавжуд бўлмаган вазият учун хосдир (ВИИ, ВИИИ моделлар). Агар институтлар стратегияларни танлашни чекламаса ва «йўналтирмаса», индивидлар ўз ҳаракатларини мувофиқлаштира олишмайди. Масалан, давлат билан сармоядор ўртасидаги ўзаро муносабатга давлатнинг нуфузи омилининг жорий этилиши (2, 3) якунда тўхталиш имконини беради; кооперация муаммоси - Нэш бўйича мувозанат мавжуд, у ягона, лекин Парето бўйича оптимал эмас (ИИИ модел - «маҳбуслар дилеммаси»). Ушбу вазиятда ҳам институционал чекловнинг жорий этилиши Парето бўйича оптимал натижага эришишни таъминлайди; адолатлилик муаммосининг долзарблиги - Нэш бўйича ягона мувозанат асимметрик, ютуқнинг ўзаро ҳамкорлик иштирокчилари ўртасида адолатсиз тақсимланиши билан тавсифланади (В, ВИ моделлар). Адолатсизлик муаммосини ҳал этиш вариантларидан бири такрорланадиган ўйинларга ўтиш ва «аралаш» стратегиялар асосида нормаларни яъни, т0 вақт лаҳзасида индивид А стратегияни, т1 вақт лаҳзасида эса Б стртегияни танлаганда бўлади. Хулоса Институционал иқтисодий назариянинг предметини индивидларларнинг ўзаро ҳамкорлиги ҳамда ушбу ҳамкорликни таъминловчи тузилмалар ташкил этади. Жон фон Нейман ва Оскар Моргенштерннинг «Ўйинлар назарияси ва иқтисодий хатти-ҳаракат» (1944) китобидаги фикрлар институционал иқтисодиётда ўйинлар назариясини татбиқ этиш учун асос бўлган. 1994 йилга келиб, биринчи бор “нокооператив ўйинлар” назариясидаги мувозонат таҳлили учун бир варакайига уч тадқиқотчи иқтисодиёт бўйича Нобель мукофотига сазовор бўлди. Булар: Райнхад Селтен (Германия), Жон Нэш (АҚШ), Жон С.Харсани (асли венгриялик – АҚШ). Ўйинлар назариясидаги формал моделни ташкил этиш учун: иштирокчи индивидларнинг мавжудлиги; ҳар бир иштирокчининг имкониятлар тўплами; иштирокчиларнинг стратегиялари ҳисобга олиниши лозим. Ўйинлар назарияси таркибий жиҳатдан кооператив(коалицияли) ва нокооператив (коалициясиз) назарияларга ажратилади. Ўйин (Г)ни таҳлил этишда уч қисм: ўйинчилар сони (Н); стратегиялар мажмуаси (Ст); иштирокчиларнинг ютуқ (П)лари асос бўлади. Ҳар бир ҳамкорлик учун мувозанатларнинг турли хиллари мавжуд бўлиши мумкин: устун стратегияли мувозанат, Нэш бўйича мувозанат, Штакельберг бўйича мувозанат ва Парето бўйича мувозанат Такрорлаш учун саволларНима учун институционал назарияда математик аппарат неоклассикаси учун анъанавий ҳисобланган математик аппарат тилидан эмас, балки ўйинлар назариясидан фойдаланилади. Индивидлар ўртасидаги ўзаро ҳамкорликнинг қайси асосий муаммолари ўйинлар назарияси ёрдамида моделлаштирилади? Кооператив (коалицияли) ва нокооператив (коалициясиз) назарияларнинг хусусиятларини изоҳланг. Устун стратегияли мувозанатни шарҳлаб беринг. Нэш бўйича мувозанатни шарҳлаб беринг. Штакельберг бўйича мувозанатни шарҳлаб беринг. Парето бўйича мувозанатни шарҳлаб беринг. Download 0.84 Mb. Do'stlaringiz bilan baham: |
ma'muriyatiga murojaat qiling