Sonli va o‘zgaruvchili ifodalar Reja
Download 117.44 Kb.
|
Sonli va o‘zgaruvchili ifodalar Reja (1)
- Bu sahifa navigatsiya:
- 4. Sonli tengsizliklar 12 – ta’rif.
3. Sonli tengliklar
11 – ta’rif. a va b ikkita sonli ifoda bo‘lsin. Ularni tenglik belgisi bilan birlashtirishdan hosil bo‘lgan a=b jumla sonli tenglik deyiladi. Masalan, 5+2 va 10-3 sonli ifodalarni olamiz va ularni tenglik belgisi bilan birlashtiramiz. 5+2=10-3 sonli tenglik hosil bo‘ladi. Bu jumla rost. Agar 3+2 va 8-4 sonli ifodalarni olsak, 3+2=8-4 yolg‘on jumla bo‘ladi. Shunday qilib, logik nuqtai nazardan sonli tenglik bu rost yoki yolg‘on bo‘lgan mulohazadir. Agar tenglikning chap va o‘ng qismlaridagi sonli ifodalarning qiymatlari bir xil bo‘lsa, sonli tenglik rost bo‘ladi. 1) agar a=b rost sonli tenglikning ikkala qismiga ma’noga ega bo‘lgan bir xil sonli ifoda c qo‘shilsa, yana rost sonli tenglik a+c=b+c hosil bo‘ladi. a=b a+c=b+c 2) agar a=b rost sonli tenglikning ikkala qismi ma’noga ega bo‘lgan bir xil sonli ifoda c ga ko‘paytirilsa, yana rost sonli tenglik ac=bc hosil bo‘ladi. a=b 3) agar a=b rost sonli tenglik bo‘lsa, uchun = lar ham rost sonli tenglik bo‘ladi. a=b a=b = 4. Sonli tengsizliklar 12 – ta’rif. a va b ikkita sonli ifoda bo‘lsin. Ularni «>» (yoki «<») belgisi bilan birlashtiramiz. a>b (yoki ajumla hosil bo‘ladi. Bu jumla sonli tengsizlik deyiladi. Masalan, 5+4>5-2 sonli tengsizlik rost, 6-4>7-3 esa yolg‘on sonli tengsizlik bo‘ladi. Demak, logik nuqtai nazardan sonli tengsizlik ham rost yoki yolg‘on mulohaza bo‘ladi. Isbot qilish mumkinki, “>” (yoki «<») munosabat qat’iy chiziqli tartib munosabatdan iborat, ya’ni u assimetrik va tranzitiv bo‘ladi, shuningdek, ikkita har xil a va b sonli ifodalar uchun a>b yoki amunosabatlardan faqat va faqat bittasi bajariladi. Ko‘rsatish mumkinki, a>b o‘rinli bo‘lishi uchun a-b>0 bo‘lishi zarur va yetarli. Agar, a>0 va b>0 bo‘lsa, a+b>0, bo‘ladi. Bu aytilgan xossalardan sonli tengsizliklarning qolgan xossalarini keltirib chiqarish mumkin. agar a>b rost sonli teng sizlikning ikkala qismiga ma’noga ega bir xil son qo‘shilsa, yana rost sonli tengsizlik a+c>b+c hosil bo‘ladi. Haqiqatdan, a>b dan a-b>0 kelib chiqadi. Lekin, (a+c)-(b+c)=a-b>0 va demak a+c>b+c Xuddi shuningdek, a>b dan a-c>b-c kelib chiqadi. agar a>b rost sonli tengsizlikning ikkala qismi ma’noga ega va musbat (manfiy) c sonli ifodaga ko‘paytirilsa, yana rost tengsizlik ac>bc (ac agar a>b va x>y rost tengsizliklar bo‘lsa, u holda a+x>b+y rost tengsizlik o‘rinli bo‘ladi. agar a>b>0 va x>y>0 rost tengsizliklar bo‘lsa, u holda ax>by rost tengsizlik hosil bo‘ladi. agar a 1 bo‘lsa, ab>b bo‘ladi, bunda a, . agar a va b har qanday a, lar uchun shunday topiladi. na>b bo‘ladi. agar a>b rost sonli tengsizlik bo‘lsa, u holda –a<-b ham rost bo‘ladi. agar 0 yoki a rost sonli tengsizliklar bo‘lsa, u holda rost sonli tengsizlik bo‘ladi. Yuqorida qaralgan a>b va a tengsizliklar bilan bir qatorda va tengsizliklar ham qaraladi. tengsizlik a>b va a=b tengsizliklar diz’yunksiyasidan iborat. Shuning uchun, u a>b va a=blarning biri rost bo‘lganda rost bo‘ladi: Masalan, 4 rost, chunki 4<7 rost, xuddi shuningdek, 4 rost, chunki 4=4 rost. 5 2 yolg‘on, chunki 5<2 ham 5=2 ham yolg‘on. 5 2>7>Download 117.44 Kb. Do'stlaringiz bilan baham: |
Ma'lumotlar bazasi mualliflik huquqi bilan himoyalangan ©fayllar.org 2024
ma'muriyatiga murojaat qiling
ma'muriyatiga murojaat qiling