3.1 Функциональное уравнение Коши
Одним из наиболее исследованных в математике является функциональное уравнение Коши
f(x+y) = f(x) +f(y), D (f) =R (3.1.1)
Теорема 3.1 Линейные однородные функции вида
f(x) = ax (a = const)
удовлетворяют этому уравнению и являются единственными.
Доказательство.
То, что данная функция удовлетворяет уравнению легко проверить:
f(x+y) = a(x+y) = ax + ay = f(x) + f(y)
Вопрос состоит в том, будут ли эти функции единственными.
Прежде всего, выведем несколько общих фактов, не накладывая никаких ограничений на функцию f (т. е. без всяких предположений о непрерывности, ограниченности и т. п.).
Положим в уравнении y = x, получим:
f(2x) = 2f(x).
Далее, последовательно полагая y = 2x, y = 3x, y = 4x и т. д., имеем:
f(3x) = f(x+2x) = f(x)+f(2x) = f(x)+2f(x) = 3f(x);(4x) = f(x)+f(3x) = 4f(x);(5x) = f(x)+f(4x) = 5f(x),
и вообще, для любого натурального n
f(nx) = n·f(x) (3.1.2)
(это легко проверяется по индукции). Заменив здесь x на , мы получим
,
а затем, если подставить mx (m - натуральное) вместо x и использовать предыдущее равенство, придём к соотношению
, (3.1.3)
Положим теперь в основном уравнении (3.1.1) x = y = 0; получим
f(0) = 2f(0), так что f(0) = 0. (3.1.4)
Если же взять y = -x, то:
0 = f(x - x) = f(x) + f(-x)(-x) = -f(x),
так что функция f(x) является нечётной. А тогда из (3.1.1) легко вывести:
(3.1.5)
Полученные соотношения (3.1.3) - (3.1.5) могут быть объединены в равенстве
f(rx) = r·f(x),
справедливом для любого вещественного значения x, каково бы ни было рациональное число r.
Если взять здесь x = 1, то получим
f(r) = r·f(1) (3.1.6)
или, если обозначить f(1) через a,
f(r) = ar.
Таким образом, мы, собственно говоря, установили уже вид функции f, но пока лишь для рациональных значений аргумента. При этом мы использовали только тот факт, что функция удовлетворяет основному уравнению Коши (3.1.1). Далее в решении мы будем уже опираться на конкретный класс функций, в котором ищется решение. Рассмотрим некоторые наиболее общие классы функций, используемых при решении
Do'stlaringiz bilan baham: |