Sunʼiy neyron tarmoqlari
Oʻrganish darajasi Oʻrganish darajasi
Download 0.67 Mb.
|
Sunʼiy neyron tarmoqlari
- Bu sahifa navigatsiya:
- Narx funksiyasi
- Nazorat ostida oʻrganish
Oʻrganish darajasiOʻrganish darajasiOʻrganish tezligi modelning har bir kuzatishdagi xatolarni tuzatish uchun koʻrsatadigan tuzatish qadamlari hajmini belgilaydi. Yuqori oʻrganish tezligi mashgʻulot vaqtini qisqartiradi, ammo past aniqlik bilan, pastroq oʻrganish koʻproq vaqt talab etadi, lekin aniqroq boʻlishi mumkin. Quickprop kabi optimallashtirishlar, birinchi navbatda, xatolarni minimallashtirishni tezlashtirishga qaratilgan boʻlsa, boshqa yaxshilanishlar asosan ishonchlilikni oshirishga harakat qiladi. Tarmoq ichidagi tebranishlarni, masalan, ulanish ogʻirliklarining oʻzgarishini oldini olish va konvergentsiya tezligini yaxshilash uchun takomillashtirish moslashtirilgan oʻrganish tezligidan foydalanadi, bu mos ravishda oshiradi yoki kamayadi. 0 ga yaqin momentum gradientni taʼkidlaydi, 1 ga yaqin qiymat esa oxirgi oʻzgarishlarni taʼkidlaydi.Narx funksiyasi
Xarajat funksiyasini ad hoc aniqlash mumkin boʻlsa-da, koʻpincha tanlov funksiyaning kerakli xususiyatlari (masalan, qavariqlik) yoki modeldan kelib chiqqanligi sababli aniqlanadi (ehtimollik modelida modelning orqa ehtimoli teskari sifatida ishlatilishi mumkin).Orqa tarqalish — bu oʻrganish jarayonida aniqlangan har bir xatoni qoplash uchun ulanish ogʻirliklarini sozlash uchun ishlatiladigan usul. Ogʻirlikni yangilash stokastik gradient tushishi yoki boshqa usullar orqali amalga oshirilishi mumkin, masalan, Extreme Learning Machines, „No-prop“ tarmoqlari, orqaga yoʻl qoʻymasdan mashq qilish, „vaznsiz“ tarmoqlar, va kontektsionist boʻlmagan neyron tarmoqlar.Uchta asosiy taʼlim paradigmalari nazorat ostida oʻrganish, nazoratsiz oʻrganish va mustahkamlovchi oʻrganishdir. Ularning har biri maʼlum bir oʻquv vazifasiga mos keladiNazorat ostida oʻrganish
Nazorat ostidagi oʻrganish juftlashtirilgan kirishlar va kerakli natijalar toʻplamidan foydalanadi..Bu holda xarajat funksiyasi notoʻgʻri ajratmalarni bartaraf etish bilan bogʻliq. Keng tarqalgan ishlatiladigan xarajat oʻrtacha kvadrat xato boʻlib, u tarmoqning chiqishi va kerakli natija oʻrtasidagi oʻrtacha kvadrat xatoni minimallashtirishga harakat qiladi. Nazorat ostida oʻrganish uchun mos boʻlgan vazifalar naqshni aniqlash (klassifikatsiya deb ham ataladi) va regressiya (funksiyani yaqinlashish deb ham ataladi) hisoblanadi. Nazorat ostida oʻrganish ketma-ket maʼlumotlarga ham tegishli (masalan, qoʻlda yozish, nutq va imo- ishoralarni aniqlash uchun).Download 0.67 Mb. Do'stlaringiz bilan baham: |
Ma'lumotlar bazasi mualliflik huquqi bilan himoyalangan ©fayllar.org 2024
ma'muriyatiga murojaat qiling
ma'muriyatiga murojaat qiling