Sunʼiy neyron tarmoqlari


Download 0.67 Mb.
bet8/9
Sana23.04.2023
Hajmi0.67 Mb.
#1382805
1   2   3   4   5   6   7   8   9
Bog'liq
Sunʼiy neyron tarmoqlari

Neyroevolyutsiya

  • Neyroevolyutsiya
  • Neyroevolyutsiya evolyutsion hisoblash yordamida neyron tarmoq topologiyalari va ogʻirliklarini yaratishi mumkin. Neyroevolyutsiyaning afzalliklaridan biri shundaki, u „oʻlik nuqtalar“ ga tushib qolishga kamroq moyil boʻlishi mumkin.

  • Stokastik neyron tarmogʻi
  • Sherrington-Kirkpatrik modellaridan kelib chiqqan stoxastik neyron tarmoqlar tarmoqqa tasodifiy oʻzgarishlar kiritish yoki tarmoqning sunʼiy neyronlariga stokastik uzatish funksiyalarini, berish yoki ularga stokastik ogʻirliklar berish orqali qurilgan sunʼiy neyron tarmoq turidir.Bu ularni optimallashtirish muammolari uchun foydali vositalarga aylantiradi, chunki tasodifiy tebranishlar tarmoqni mahalliy minimaldan qochishga yordam beradi.

  • Tartiblar
  • Oʻrganishning ikkita usuli mavjud: stokastik va ommaviy. Stokastik oʻrganishda har bir kiritish vazNTi sozlashni yaratadi. Toʻplamda oʻrganish ogʻirliklari partiya boʻyicha xatolar toʻplanib, kirishlar partiyasi asosida oʻrnatiladi. Biroq, toʻplamli oʻrganish odatda mahalliy minimal darajaga tezroq va barqaror pasayish imkonini beradi, chunki har bir yangilash partiyaning oʻrtacha xatosi yoʻnalishi boʻyicha amalga oshiriladi. Umumiy kelishuv „mini-partiyalar“ dan, har bir partiyadagi namunalar bilan butun maʼlumotlar toʻplamidan stokastik tarzda tanlangan kichik partiyalardan foydalanishdir.

Umumlashtirish va statistika

  • Umumlashtirish va statistika
  • Maqsadlari koʻrinmas misollarni yaxshi umumlashtiradigan tizim yaratish boʻlgan ilovalar ortiqcha oʻqitish imkoniyatiga duch kelishadi. Ikkita yondashuv ortiqcha mashgʻulotlarni hal qiladi. Birinchisi, ortiqcha treninglar mavjudligini tekshirish va umumlashtirish xatosini minimallashtirish uchun giperparametrlarni tanlash uchun oʻzaro tekshirish va shunga oʻxshash usullarni qoʻllashdir.

    Bu kontseptsiya probabilistik (Bayesian) doirada paydo boʻladi, bu erda tartibga solish oddiyroq modellarga nisbatan kattaroq oldingi ehtimollikni tanlash orqali amalga oshirilishi mumkin.Bundan tashqari, statistik oʻrganish nazariyasida, maqsad ikkitadan ortiq miqdorni minimallashtirishdan iborat: „ampirik risk“ va „tarkibiy xavf“, bu taxminan oʻquv majmuasi ustidagi xatoga va koʻrinmas maʼlumotlarning haddan tashqari moslashuvi tufayli taxmin qilingan xatoga mos keladi.


    Download 0.67 Mb.

    Do'stlaringiz bilan baham:
1   2   3   4   5   6   7   8   9




Ma'lumotlar bazasi mualliflik huquqi bilan himoyalangan ©fayllar.org 2024
ma'muriyatiga murojaat qiling