Limit teoremalar
Agar n va m lar katta sonlar bo‗lsa, u holda Bernulli formulasidan foydalanib, P (m) n ehtimollikni hisoblash qiyinchilik tug‗diradi. Xuddi shunday, p(q) ehtimollik juda kichik qiymatlar qabul qilsa ham qiyinchiliklarga duch kelamiz. Shu sababli, n da P (m) n uchun asimptotik(taqribiy) formulalar topish muammosini tug‗diradi.
Puasson formulasi
Agar n da A hodisaning ro‗y berish ehtimolligi p har bir tajribada cheksiz kamaysa(ya‘ni np a 0 ), u holda
Muavr-Laplasning lokal teoremasi Agar p ( p 0, p 1 )ehtimollik nol atrofidagi son bo‗lmasa va n etarlicha katta bo‗lsa, u holda P (m) n ehtimollikni hisoblash uchun MuavrLaplas teoremasidan foydalanish mumkin. Teorema(Muavr-Laplas) Agar n ta bog‗liqsiz tajribada A hodisaning ro‗y berish ehtimolligi 0 p 1 bo‗lsa, u holda yetarlicha katta n larda 2 2 2 1
IV. Foydalanilgan adabiyotlar
https://parallel.ru/vvv/lec1.html
https://searchdatacenter.techtarget.com/definition/parallel-processing
https://www.shutterstock.com/ru/search/multi+core
www.google.com
www.wikipedia.com
Do'stlaringiz bilan baham: |