Technological Parameters Effect on Structure and Phase Composition


Download 43.9 Kb.
Pdf ko'rish
Sana31.12.2017
Hajmi43.9 Kb.
#23500

Oral Session 

693 


Technological Parameters Effect on Structure and Phase Composition 

of Intermetallic Coating on the Basis of Ni–Al 

M.V. Fedorischeva, V.P. Sergeev, A.R. Sungatulin, O.V. Sergeev, and M.P. Kalashnikov 

Institute of Strength Physics and Materials Science SB RAS, 2/4, Academicheckii ave., Tomsk, 634021, Russia 

 Phone: +7 (3822) 286-876, Fax: +7 (3822) 491-032, E-mail: fmw@ispms.tsc.ru 

Abstract – Phase composition, thin structure and 

morphology of the surface of the intermetallic coat-

ing are investigated by X-ray analysis and scanning 

electron microscope (SEM.) It is shown that Ni

3

Al 

is the main phase of the intermetallic coating for all 

investigated samples. There is the NiAl phase in 

samples of the first type. The application of tem-

perature and ion implantation changes the crystal-

line lattice parameter, the long-range order pa-

rameter and the internal elastic stresses, 

microhardness of produced coating.  

1. Introduction 

Heat resisting of metal materials using in the modern 

equipment and technologies under the maximal tem-

perature conditions are based on nickel alloys [1–3]. 

The most intensive development of heat resisting alu-

minium coating has begun with creation of gas-turbine 

jet aircraft. At the first stages of development of gas-

turbine engines it was possible to provide a necessary 

combination of thermal stability and heat resistance by 

creation of new alloys. The next years application of 

protective coating on turbine became necessity. 

The intermetallic compounds

 

Ni

3



Al and NiAl have 

a number of unique properties and they are objects of 

numerous investigations [4, 5]. Interest to intermetal-

lic compound of nickel with aluminium and, in par-

ticular, to intermetallide Ni

3

Al as to a constructional 



material is determined by anomalous temperature de-

pendence of their mechanical properties. It means that 

in the certain temperature interval when temperature 

increases the mechanical properties do not decrease, 

and on the contrary increase. In pure metals resistance 

to deformation always decreases when temperature 

increases. The Ni–Al system apart from solid solu-

tions has four equilibrium phases:

 

NiAl


3

  (


ε-phase),

 

Ni



2

Al

3



 (

δ-phase), NiAl (β-phase),

 

Ni

3



Al (

γ'-phase) and 

a non-equilibrium phase of

 

Ni



5

Al

3



 [3.] NiAl (super-

structure  В2), and

 

Ni

3



Al (superstructure

 

L1



2

) are the 

most promising for usage as a coating [6]. 

Magnetron deposition is the most widespread and 

reliable way of coating deposition on the basis of Ni-

Al alloys. High-energy ion beams are an effective way 

of modification of a structural – phase condition and 

mechanical properties of the surface layer. It allows to 

produce coating with higher mechanical properties. In 

works [7] we in detail investigated effect of ionic-

beam processing, substrate temperatures on a structur-

ally-phase state, nanohardness and wear resistance of 

intermetallic coatings produced by a magnetron depo-

sition.  

It is known [8, 9], that in some cases alloying by 

the third element allows to improve properties of ma-

terial essentially. In the present work it is continued 

studying of technological parameters effect on a struc-

turally-phase state of nanocrystalline intermetallide of 

Ni

3



Al. Besides there is begun studying of the third 

element effect such as boron on structure, mechanical 

properties of intermetallic coatings.  

2. Experimental 

The Ni


3

Al coatings were deposited by a magnetron 

sputtering system “Kvant” type combined with the arc 

evaporator with the aluminium cathode. Ion implanta-

tion was carried out using ionic source “DIANA-

2”.type. 

The phase composition and the crystalline struc-

ture parameters of the intermetallic coatings were ex-

amined by the X-ray. The atomic long-range order 

parameter was determined as the relationship between 

the intensity of the main and superstructure reflec-

tions [10]. The internal stresses are the result of the 

analysis of the X-ray line-broadening profiles and can 

be determined from the local changes in the lattice 

parameters. The stresses value were estimated as 

Δd

max.

/d, where d is the lattice plane spacing. For cu-



bical syngony 

Δd/= Δa/a; σ ≅ (Δd/dE, where Е is 

the elasticity modulus, 

Δd/d  и  Δа/а at anisotropic Е 

depend on the direction [10]. The direction, in our 

case, was not taken into account.  

Scanning electronic microscopy (SEM) was used 

to study the morphology and elements composition of 

the surface of the intermetallic coating. Investigations 

were carried out on device LEO EVO 50. Microhard-

ness was measured with PMT-3 device. 

For researches four set of samples have been pre-

pared at different technological parameters: The first 

set of samples were prepared by magnetron deposition 

with working low-energy high-current evaporator with 

the aluminium cathode which was behind of the sam-

ple (samples of I type). Thus substrate was heated up 

to temperature of 600 K. Samples of I, 3 and 4 type 

were prepared by magnetron deposition the following 

implantation of Al and B ions with different dose 

⋅ 10


17

 cm


–2

, 4 


⋅ 10

17

 cm



–2

, 8 


⋅ 10

17

 cm



–2

.  


3. Results 

The morphology of a coating surface of the first, sec-

ond and the fours types are shown in Fig. 1. It is clear, 

that in the all case, at magnitude of 10000 times, 



Beam and Plasma Nanoscience and Nanotechnology 

694 


grains are not resolved (Figs. 1, abc). It demon-

strates the fine grain size of coatings using magnetron 

deposition assisted by low-energy high-current evapo-

rator. Ionic implantation make surface of samples 

more coarse. The sample with the maximum dose of 

an irradiation has the greatest degree of a roughness  

(4 type). On all samples thre is dripping fration. There 

are greatest quantity of Al in dripping compare with 

main structure, as microX-ray spectrum analysis 

showed.  

 

 



 



 

Fig. 1. Morphology  of  surface  of intermetallic coating:  

  

1 type (a); 2 type (b); 4 type (c



By X-ray method it is established, that in structure 

of coating of the first type there are two phases of bi-

nary state diagram of Ni–Al: it is Ni

3

Al phase with



 

superstructure L1

2

 and NiAl phase having В2 type. 



Crystalline lattice parameters of these phases are re-

sulted in the Table. It is necessary to note, that on the  

X-ray pattern (Fig. 2, a) practically there are no super-

structural lines, i.e. intermetallic coating is in the dis-

order state. In coatings of 2, 3, 4 type after ionic im-

plantation phase there is phase AlB

12

. As a whole, in 



all coatings a crystalline lattice parameter of Ni

3

Al 



phase is a little bit overestimated in comparison with 

known literature data which is equal 3.57 Å. [4].  

 

Phase compound and structural characteristic  



of the Ni

3

Al intermetallic coatings 



Set 

of sam-


ples 

Phase 


compound 

а, A 

CSR, 


nm 

Δd/d 

Micro- 

hardness, 



GPa 

1 

Ni

3

Al 3.5806 



27

±3  0.0053 16.1 

2 Ni

3

Al, AlB  3.5826  24



±3 

0.009 20.4 

3 Ni

3

Al, AlB



12

3.5834  50

±5  0.0025 21.9 

4 Ni


3

Al, AlB


12

3.5876  33

±3 

0.001 22.4 



 

Most likely, it is caused by presence of interstitial 

impurity which present at a coatings. The results of 

microanalysis data confirm it. As a rule, in structure of 

material there is 2–3% of carbon.  

Presence of NiAl phase at samples of the first type 

is caused, most likely, by excess aluminium ions 

which are sprayed by low-energy high-current evapo-

rator on a substrate. As a result there is a excess con-

tents of aluminium, as leads to formation of the sec-

ond phase.  

The formation heat of NiAl phase it is essential 

more then formation heat of Ni

3

Al phase with other 



things being equal, NiAl it is formed first of all. Mi-

crohardness of intermetallide coatings, measured for 

samples of all types, considerably differs. It has the 

maximal value for coatings with the subsequent im-

plantation of Al and B ions (samples of III type).  

4. Conclusion 

By X-ray methods and SEM it is established, that 

there are NiAl and Ni

3

Al phases in the disorder condi-



tion in coatings of the first type.  

In coatings of 2, 3, 4 types there are Ni

3

Al phase 



and a small amount of phase

 

AlB



12

Increase in microhardness of intermetallide coat-



ings is connected with presence of interstitial impu-

rity, secondary phases, influence of ionic implantation 

[11]. 

References 

[1] Ch. Sims  and  V. Hagel,  High-temperature mate-



rial, Мoscow, Metallurgy, 1976, 567 p. 

[2] Supersplavi  1.  High-temperature material dlya 



aerokosmicheskih i industry energoustanovok

Book 1. Trans. s angl. Мoscow, Metallurgy, 1995, 

385 p. 

[3] Supersplavi  1.  High-temperature material dlya 



aerokosmicheskih i industry energoustanovok

Oral Session 

695 


Book 1. Trans. s angl, Мoscow, Metallurgy, 1995,  

384 p.  


[4] C.T. Liu  and  P. David.,  Intermetallic Compounds

Principles and practice, Practice 2, 1994, 17 p. 

[5] B. Daniel Miracie Ramgopal Darolia, Intermetallic 

Compounds, Principles and practice, Practice 2, 

1994, 54 p. 

[6] T.B.  Massalski,  Binary alloy phase diagrams

V. 1,  Ohio: American Society for Metals, Metals 

Park., 1986, 1002 р. 

[7] M.V. Fedorischeva,  V.P. Sergeev,  N.A. Popova, 

and E.V. Kozlov, Materials Science and Engineer-

ing A  483–484, 644 (2008). 

[8] E.V. Kozlov, 

M.V. Fedorishcheva, E.L. 

Nik-

onenko, and N.A. Koneva, Bulletin of the Russian 



Academy of Sciences: Physics 73, 8, 1101 

 (2009). 

[9] K. Aoki and O. Izumi, Phys. Stat. Sol. (a) 32

657 (1975). 

[10] B.E. Warren,  X-ray diffraction, Addison – 

Wesley Publision Company Reading Massachu-

setts Menlo Park California, London Don Mealls, 

Ontario, 1969, 381 p. 

[11] V.P. Sergeev,  V.G. Abdrashitov,  V.V. Richfhov, 

and V.P. Yanovskii, Phisica I Chimiya Obrabotki 

Materialov 23 (1992). 

[12] Sandip Bysakh, P.K. Das, and K. Chattopadhyay, 

Scripta Mater. 44, 1847 (2001). 

[13] H.T.G. Hentzell, B. Anderson, and S. E. Karlson, 



Acta Metal 31, 1131 (1983). 

Download 43.9 Kb.

Do'stlaringiz bilan baham:




Ma'lumotlar bazasi mualliflik huquqi bilan himoyalangan ©fayllar.org 2024
ma'muriyatiga murojaat qiling