Тема Математическое введение в цифровую технику
Download 0.9 Mb.
|
Konspekt lektsy.doc.
JK-триггер. JK-триггер относится к двухвходовым устройствам и функционирует по правилам, похожим на правила функционирования RS-триггера. Отличие состоит в том, что в JK-триггере все состояния являются определенными. Можно провести аналогию входов JK- и RS-триггеров: вход K JK-триггера выполняет функцию входа R RS-триггера, а вход J JK-триггера – функцию входа S RS-триггера. При этом, если в RS-триггере комбинация единичных значений входов R и S является запрещенной, то в случае аналогичной комбинации J- и K-входов, JK-триггер меняет свое состояние на противоположное. Правило работы асинхронного JK-триггера можно сформулировать следующей таблицей переходов:
Выполнив действия, аналогичные действиям по нахождению логической функции RS-триггера, можно определить выражение для Qn+1 асинхронного JK-триггера . Наибольшее распространение получили тактируемые или синхронные JK-триггеры, работа которых задается таблицей переходов:
Соответствующее таблице логическое выражение имеет вид Поскольку при подаче на J- и K-входы триггер инвертирует свое состояние, т.е. выполняет функцию Т-триггера, то логично предположить, что структура синхронного JK-триггера должна повторять структуру T-триггера. В качестве базовых следует выбрать RS-триггеры. Причем, первый RS-триггер должен быть асинхронным и иметь внешнюю в структурном плане схему стробирования выходных сигналов с сигналом синхронизации C и соответствующими сигналами J и K (рис. 5.11,а). С выходов элементов И-НЕ сигналы имеют инвертированные значения, поэтому в качестве асинхронного RS-триггера следует выбирать триггер, реализованный на базе элементов И-НЕ и имеющий инверсные входы и . Условное графическое изображение синхронного двухступенчатого JK-триггера приведено на рис. 5.11,б. а) б) Рис. 5.11. Структура синхронного JK-триггера и его условное графическое обозначение. Триггер JK-типа относится к разряду универсальных, поскольку на его основе можно получить схемы, выполняющие функции RS-, D- и T-триггеров. Для выполнения функции RS-триггера, JK-триггер можно использовать, не вводя никаких дополнительных связей и узлов. Достаточно сигнал S подать на вход J, а сигнал R – на вход K (рис. 5.12,а). При этом одновременная подача на эти входы логических единиц не нарушит правило работы RS-триггера, поскольку у RS- триггера такая комбинация входных сигналов является вовсе неопределенной. Если в логическом уравнении для синхронного JK-триггера принять и , тогда , что совпадает с логическим уравнением D-триггера. Таким образом, для получения D-триггера из JK-триггера необходимо сигнал подавать на вход J, который будет выполнять функцию D-входа, а на вход K сигнал D подавать через инвертор (рис. 5.12,б). Для получения T-триггера достаточно объединить входы J и K. Тогда справедливы следующие преобразования . Это уравнение приобретает вид логического уравнения T-триггера, причем объединенные входы J и K играют роль T-входа (рис. 5.12,в). В качестве входа Т можно использовать и вход разрешения записи С тактируемого JK-триггера. В этом случае на объединенные входы J и K необходимо постоянно подавать логическую единицу, что задает режим инвертирования состояния JK-триггера. При этом само инвертирование будет происходить лишь при поступлении на вход C разрешающего сигнала (рис. 5.12,г). а) б) в) г) Рис. 5.12. Реализация триггеров различных типов на базе JK-триггера. Рассмотренные ранее способы подачи входных сигналов характеризуются тем, что их активными уровнями являются статические состояния, т.е. сами уровни напряжения логического нуля или логической единицы. Такая форма управления цифровым устройством называется статической. Для тактируемых устройств эта форма управления в большинстве случаев является неудобной, поскольку в течение всего времени действия импульса сигнала синхронизации, устройство будет реагировать на любые изменения входных информационных сигналов. Таким образом, необходимо, чтобы информационные сигналы оставались неизменными на протяжении действия импульса синхронизации. Это значительно усложняет схему устройства, а в некоторых случаях и вовсе является не решаемой задачей, поскольку информационные сигналы могут носить характер случайной последовательности импульсов. Для устранения указанного недостатка используется принцип динамического управления. Согласно этому принципу, активным считается не статический уровень напряжения логической единицы или логического нуля, а процесс перехода из одного уровня в другой. Этот процесс представляет собой передний или задний фронт тактирующего импульса и, следовательно, характеризуется малым временным промежутком. Поэтому задача синхронизации значительно упрощается и представляет собой фиксацию входных информационных сигналов в строго определенный момент подачи или снятия импульса синхронизации. На рис. 5.13 показаны условные обозначения входов микросхем с динамическим управлением. В качестве сигнала выбран управляющий сигнал синхронизации С. Рис. 5.13. Обозначение входов динамического управления. 5-3. Счетчики. Счетчики представляют собой последовательностые цифровые устройства и предназначены для выполнения операций счета и хранения кода числа подсчитанных импульсов. Существуют различные схемы счетчиков, отличающихся назначением, типом используемых триггеров, организацией связи между ними, порядком смены состояний. По порядку изменения состояний счетчики бывают с естественным и произвольным порядком счета. В первых значение кода каждого последующего состояния счетчика отличается на единицу от кода предыдущего состояния. В счетчиках с произвольным порядком счета значения кодов соседних состояний могут отличаться более чем на единицу. Счетчики также подразделяются на простые и реверсивные. Простые счетчики делятся на суммирующие и вычитающие. В суммирующих счетчиках код последующего состояния имеет большее значение, чем код предыдущего состояния, а в вычитающих – меньшее значение. Реверсивные счетчики могут работать как в режиме суммирования, так и в режиме вычитания. Основными параметрами счетчика являются: модуль счета или коэффициент пересчета Ксч; быстродействие счетчика. Модуль счета Ксч характеризует число устойчивых состояний счетчика, т. е. предельное число импульсов, которое может быть им сосчитано. После поступления Ксч входных импульсов счетчик возвращается в исходное состояние. Такие счетчики называются также делителями на число, равное Ксч.. По модулю счета счетчики подразделяются на двоичные, у которых Ксч=2m, и недвоичные, у которых Ксч2m, где m – положительное целое число. Быстродействие счетчика в свою очередь определяется двумя величинами: разрешающей способностью , т.е. минимальным допустимым интервалом времени между подачей двух входных импульсов, при котором не происходит потеря счета; временем установки tуст кода счетчика, т.е. интервалом времени между моментом поступления входного сигнала и моментом завершения перехода счетчика в новое устойчивое состояние. При этом должно выполняться условие tр>tуст. Поскольку счетчики представляют собой класс ПЦУ, то и синтез их целесообразно выполнять на основе базовых элементов ПЦУ, т.е. триггерах. Количество триггеров для двоичных счетчиков определяется формулой mдв.=log2Kсч. Для недвоичных счетчиков количество триггеров следует выбирать из условия mнедв.log2Kсч, где log2Kсч - двоичный логарифм заданного коэффициента пересчета, округленный до ближайшего (большего) целого числа. Download 0.9 Mb. Do'stlaringiz bilan baham: |
ma'muriyatiga murojaat qiling