Тема: Уравнение затухающих колебаний. Коэффициент затухания, логарифмический декремент, добротность. Изохронность. Энергетические отношения для осциллятора (вибратора). Понятия связанных осцилляторов. Принудительные колебания
Download 186.95 Kb.
|
Уравнение затухающих колебаний. Коэффициент затухания, логарифмический декремент, добротность. Изохронность. Энергетические отношения для осциллятора
- Bu sahifa navigatsiya:
- Формула Больцмана
Приведённое количество теплоты, сообщаемое телу в любом обратимом круговом процессе, равно нулю.
Подынтегральное выражение δQ/T – полный дифференциал некоторой функции, которая определяется только состоянием системы и не зависит от пути, каким система пришла в это состояние. Энтропия – это функция состояния, полным дифференциалом которой является δQ/T. Для обратимых процессов изменение энтропии ΔS=0, для необратимых процессов ΔS>0. Так как реальные процессы необратимы, то можно утверждать, что все процессы в замкнутой системе ведут к увеличению её энтропии – принцип возрастания энтропии. Формула Больцмана S=klnW, где k – постоянная 37.Реальные газы. Отступление от законов идеальных газов. Взаимодействие молекул. Уравнение Ван-дер-Ваальса. Анализ уравнения. РЕА́ЛЬНЫЙ ГАЗ, газ, свойства которого существенно зависят от взаимодействия молекул (см. Межмолекулярное взаимодействие). В обычных условиях, когда средняя потенциальная энергия взаимодействия молекул много меньше их средней кинетической энергии, свойства реальных газов незначительно отличаются от свойств идеального газа и к реальным газам применимы законы, установленные для идеального газа. Отличие свойств реального газа от свойств идеального становится особенно значительным при высоких давлениях и низких температурах, когда начинают проявляться квантовые эффекты. В модели идеального газа не учитывается собственный объем молекул и силы межмолекулярного взаимодействия. Тщательная экспериментальная проверка газовых законов (закон Бойля —Мариотта, закон Шарля, закон Гей-Люссака) современными методами показала, что эти законы достаточно точно описывают поведение реальных газов при небольших давлениях и высоких температурах. При других условиях наблюдаются значительные отступления от этих законов. Причина заключается в том, что, во-первых, при очень сильном сжатии газов объем незанятого молекулами пространства становится сравним с объемом, занимаемым самими молекулами; а во-вторых, при низких температурах становится заметным взаимодействие между молекулами. Поэтому для описания поведения газа при достаточно больших плотностях (больших давлениях) уравнения состояния идеального газа не пригодны. Наличие сил межмолекулярного взаимодействия, а именно сил отталкивания, действующих на малых расстояниях порядка размеров молекул, и сил притяжения, приводит к сложной зависимости энергии потенциального взаимодействия молекул от расстояния. Для описания термодинамических свойств реальных газов используются различныеуравнения состояния. При малых плотностях наличие межмолекулярного взаимодействия учитывается вириальным уравнением состояния реального газа: pV = RT[1 + B(T)/v + C(T)/v2 + ...], где p — давление, v — мольный объем, Т — абсолютная температура, R — газовая постоянная, В(Т), С(Т) и т. д. — вириальные коэффициенты, зависящие от температуры и характеризующие парные, тройные и т. д. взаимодействия частиц в газе. Качественно верно описывает основные отличия реального газа от идеального уравнение Ван-дер-Ваальса, учитывающее существование сил притяжения между молекулами, действие которых приводит к уменьшению давления газа, и сил отталкивания, препятствующих безграничному сжатию газа. Кроме уравнения Ван-дер-Ваальса было предложено много других эмпирических уравнений состояния реальных газов. Некоторые из них дают лучшее согласие с опытом за счет большого числа входящих в них феноменологических постоянных. Однако при качественном исследовании поведения реальных газов использование уравнения Ван-дер-Ваальса более удобно, благодаря его простоте и понятному физическому смыслу. Одной из основных характеристик реальных газов являются размеры молекул. В реальных газах их называют газокинетическими радиусами, и их размер связан с характерными расстояниями, на которых проявляются силы межатомных и межмолекулярных взаимодействий. В реальных газах возникают неоднородности полей давления и температуры, а также макроскопические потоки, которые приводят к переносу массы — диффузии. Для реальных газов характерна теплопроводность и вязкость. Главная особенность кинетических процессов переноса в реальных газах (в отличие от жидкостей и твердых тел) — наличие механизма столкновения молекул. Поэтому основной характеристикой этих процессов в газах является длина свободного пробега. Внутренняя энергия реального газа зависит от объема V, то есть от расстояния между молекулами, так как потенциальная энергия молекул определяется их взаимным расположением. Существование межмолекулярного взаимодействия в той или иной степени сказывается на всех свойствах реальных газов. Download 186.95 Kb. Do'stlaringiz bilan baham: |
Ma'lumotlar bazasi mualliflik huquqi bilan himoyalangan ©fayllar.org 2024
ma'muriyatiga murojaat qiling
ma'muriyatiga murojaat qiling