Температурная зависимость проводимости собственных полупроводников


Download 259.91 Kb.
bet3/8
Sana09.04.2023
Hajmi259.91 Kb.
#1343531
1   2   3   4   5   6   7   8
Bog'liq
Документ Microsoft Word

Вынужденные колебания
А вот вынужденные колебания восполняют запас энергии внешним воздействием. Если это происходит каждый период, то колебания вообще затухать не будут.
Какие колебания называются вынужденными?

  • Вынужденные колебания – это колебания, которые происходят под действием внешней периодически меняющейся силы.

Частота, с которой эта сила воздействует, равна частоте, с которой система будет колебаться.
Например, качели — если вас кто-то будет на них качать, каждый раз давая толчок, когда вы приходите в одну и ту же точку, такое колебание будет считаться вынужденным.
Это колебание все еще будет считаться вынужденным, если вас будут раскачивать из положения равновесия. Просто в данном случае амплитуда (о которой речь пойдет чуть ниже) будет увеличиваться с каждым колебанием.
Автоколебания
Иногда вынужденному колебанию не нужно внешнего воздействия, чтобы случиться. Бывают такие системы, в которых это внешние воздействие возникает само из-за способности регулировать поступление энергии от постоянного источника.
У автоколебательной системы есть три важных составляющих:

  • сама колебательная система

  • источник энергии

  • устройство обратной связи, обеспечивающей связь между источником и системой

Например, часы с кукушкой — пример автоколебательной системы. Гиря на ниточке (цепочке) стремится вращать зубчатое колесо (храповик). При колебаниях маятника анкер цепляет за зубец, и вращение приостанавливается.
Но в результате маятник получает толчок, компенсирующий потери энергии из-за трения. Потенциальная энергия гири, которая постепенно опускается, расходуется на поддержание незатухающих колебаний.

  1. Квантовое описание процессов микромира

Э.Резерфорд, 1936 г.: «Как расположены электроны во внешней части атома? Я считаю первоначальную квантовую теорию спектра, выдвинутую Бором, одной из наиболее революционных из всех когда-либо созданных в науке; и я не знаю другой теории, которая имела бы больший успех. Он был в то время в Манчестере и, твердо уверовав в ядерную структуру атома, которая выяснилась в экспериментах по рассеянию, старался понять, как надо расположить электроны, чтобы получить известные спектры атомов. Основа его успеха лежит во внесении в теорию совершенно новых идей. Он внес в наши представления идею кванта действия, а также идею, чуждую классической физике, о том, что электрон может вращаться по орбите вокруг ядра, не испуская излучения. Выдвигая теорию ядерного строения атома, я вполне отдавал себе отчет в том, что согласно классической теории электроны должны падать на ядро, а Бор постулировал, что по некоторым неизвестным причинам этого не происходит, и на основе этого предположения он, как вы знаете, сумел объяснить происхождение спектров. Применяя вполне разумные допущения, он шаг за шагом решил вопрос о расположении электронов во всех атомах периодической таблицы. Здесь было много трудностей, так как распределение должно было соответствовать оптическим и рентгеновским спектрам элементов, но в конце концов Бор сумел предложить такое расположение электронов, которое показало смысл периодического закона.
В результате дальнейших усовершенствований, главным образом внесенных самим Бором, и видоизменений, произведенных Гейзенбергом, Шредингером и Дираком, изменилась вся математическая теория и были введены идеи волновой механики. Совершенно независимо от этих дальнейших усовершенствований я рассматриваю труды Бора как величайший триумф человеческой мысли.
Чтобы осознать значение его работ, следует рассмотреть хотя бы только необычайную сложность спектров элементов и представить себе, что в течение 10 лет все основные характеристики этих спектров были поняты и объяснены, так что теперь теория оптических спектров настолько завершена, что многие считают это исчерпанным вопросом, подобно тому, как это было несколько лет назад со звуком».
К середине 20-х годов стало очевидно, что полуклассическая теория атома Н.Бора не может дать адекватное описание свойств атома. В 1925–1926 гг. в работах В.Гейзенберга и Э.Шредингера был разработан общий подход описания квантовых явлений – квантовая теория.

�=�∫0�(�¨+2��0�˙+�02�)�˙��=�2���0Ω2�=2��2���0Ω

Состояние классической частицы в любой момент времени описывается заданием ее координат и импульсов (x,y,z,px,py,pz,t). Зная эти величины в момент времени t, можно определить эволюцию системы под действием известных сил во все последующие моменты времени. Координаты и импульсы частиц сами являются величинами, непосредственно измеряемыми на опыте. В квантовой физике состояние системы описывается волновой функцией ψ(х,у,z,t). Т.к. для квантовой частицы нельзя одновременно точно определить значения ее координат и импульса, то не имеет смысла говорить о движении частицы по определенной траектории, можно только определить вероятность нахождения частицы в данной точке в данный момент времени, которая определяется квадратом модуля волновой функции W ~ |ψ(x,y,z)|2.


Эволюция квантовой системы в нерелятивистском случае описывается волновой функцией, удовлетворяющей уравнению Шредингера

где  – оператор Гамильтона (оператор полной энергии системы).
В нерелятивистском случае  −  2/2m +  (r), где т – масса частицы,  – оператор импульса,  (x,y,z) – оператор потенциальной энергии частицы. Задать закон движения частицы в квантовой механике это значит определить значение волновой функции в каждый момент времени в каждой точке пространства. В стационарном состоянии волновая функция ψ(х,у,z) является решением стационарного уравнения Шредингера  ψ = Eψ. Как и всякая связанная система в квантовой физике, ядро обладает дискретным спектром собственных значений энергии.
Состояние с наибольшей энергией связи ядра, т. е. с наименьшей полной энергией Е, называют основным. Состояния с бòльшей полной энергией – возбуждённые. Нижнему по энергии состоянию приписывается нулевой индекс и энергия E0 = 0.
E0 → Mc2 = (Zmp + Nmn)c2 − W0;
W0 – энергия связи ядра в основном состоянии.
Энергии Ei (i = 1, 2, ...) возбуждённых состояний отсчитываются от основного состояния.

Схема нижних уровней ядра 24Mg.
Нижние уровни ядра дискретны. При увеличении энергии возбуждения среднее расстояние между уровнями уменьшается.
Рост плотности уровней с увеличением энергии является характерным свойством многочастичных систем. Он объясняется тем, что с увеличением энергии таких систем быстро растет число различных способов распределения энергии между нуклонами.
Квантовые числа 
– целые или дробные числа, определяющие возможные значения физических величин, характеризующих квантовую систему – атом, атомное ядро. Квантовые числа отражают дискретность (квантованность) физических величин, характеризующих микросистему. Набор квантовых чисел, исчерпывающе описывающих микросистему, называют полным. Так состояние нуклона в ядре определяется четырьмя квантовыми числами: главным квантовым числом n (может принимать значения 1, 2, 3, …), определяющим энергию Еn нуклона; орбитальным квантовым числом l = 0, 1, 2, …, n, определяющим величину L орбитального момента количества движения нуклона (L = ћ[l(l+1)]1/2); квантовым числом m ≤ ±l, определяющим направление вектора орбитального момента; и квантовым числом ms = ±1/2, определяющим направление вектора спина нуклона.
Таблица.

Download 259.91 Kb.

Do'stlaringiz bilan baham:
1   2   3   4   5   6   7   8




Ma'lumotlar bazasi mualliflik huquqi bilan himoyalangan ©fayllar.org 2024
ma'muriyatiga murojaat qiling