Massa birligi milliy boshlang‘ich etaloni2
Massa birligi milliy boshlang‘ich etaloni namunaviy massa o‘lchovi majmuasi, tarozi va tarozi komparatoridan tashkil topgan, ushbu namunaviy vositalar 2000 yilda Shveytsariyaning «METTLER-TOLEDO» ishlab chiqarish qurulmalari laboratoriyasida tayyorlangan.
MBE tarkibiga:
- Tarozi komparatorlari АТ10005, АТ20005, AT 1006, АТ1005, АТ1004, РR1203, АТ200, PR5003, PR10003, КA30-3, AT 106H, UMT2, AT21, UMT5;
- Е1 aniqlik sinfidagi namunaviy massa o‘lchovlari: (1 ÷ 500) mg; (1
÷ 500) g; 1, 2, 5, 10, 20 kg.
Metrologik xarakteristikalari
Tarozi-komparatorlari
|
O‘lchash ko‘lami
|
Nisbiy xatolik
(noaniqlik)
|
Tarozi-komparatori AT10005
|
10011 g
|
0,01 mg
|
Tarozi-komparatori AT20005
|
20000 g
|
0,01 mg
|
Tarozi-komparatori AT 1006
|
1011 g
|
1 µg
|
Tarozi-komparatori AT1005
|
1109 g
|
0,01 mg
|
2 Исматуллаев П.Р., Қодирова Ш.А. Метрология асослари: Ўқув қўлланма, Тошкент “Таффакур” нашриёти
2012, 286 б.
Tarozi-komparatorlari
|
O‘lchash ko‘lami
|
Nisbiy xatolik
(noaniqlik)
|
Tarozi-komparatori AT1004
|
1109 g
|
0,1 mg
|
Tarozi-komparatori RR1203
|
1200 g
|
0,001 g
|
Tarozi-komparatori AT200
|
205 g
|
0,1 mg
|
Tarozi-komparatori PR5003
|
5100 g
|
1 mg
|
Komparator PR10003
|
10 kg
|
1 mg
|
Komparator KA30-3
|
30 kg
|
5 mg
|
Mikrotarozi-komparatori AT 106H
|
111 g
|
1 µg
|
Mikrotarozi-komparatori UMT2
|
2100 mg
|
0,1 µg
|
Микротарози-компаратори AT21
|
22 g
|
1 µg
|
Mikrotarozi-komparatori UMT5
|
5100 mg
|
0,1 µg
|
Ishlab chiqarish faoliyati va fanning massani aniq o‘lchash natijalariga ehtiyojmand bo‘lgan sohalar:
- Asbobsozlik va mashinasozlik;
- transport;
- elektron va mudofaa texnologiyalari;
- tayyor mahsulotlarning hisobi va nazorati va boshqalari.
Topshiriq: Talabalar mustaqil tarzda adabiyotlat va Internet tarmog‘idan foydalangan holda chastota va vaqt birliklari milliy boshlang‘ich etaloni va massa birligi milliy boshlang‘ich etalonining vazifalari, metrologik xarakteristikalari va qo‘llanilish doirasi haqida yozma ma’lumot tayyorlashlari talab etiladi.
Takrorlash uchun savollar:
1. Ozbekiston respublikasining Milliy boshlang‘ich etalonlari haqida umumiy ma’lumnot bering.
2. Chastota va vaqt birliklari milliy boshlang‘ich etaloni qayarda tayyorlangan?
3. Chastota va vaqt birliklari milliy boshlang‘ich etalonining asosiy metrologik xossalarini aytib bering.
4. Chastota va vaqt birliklari milliy boshlang‘ich etalonining tarkibiga nimalar kiradi?
5. Massa birligi milliy boshlang‘ich etaloni nimalardan tashkil topgan?
6. Massa birligi milliy boshlang‘ich etaloninina asosiy metrologik xossalarini aytib bering.
ILOVALAR
0 1 d a n 1 7 g a c h a b o ‘ l g a n k v a l i t e t l a r d a g i o ‘ l c h a m l a r j o i z l i k l a r i q i y m a t l a r i
1- jadval
O ‘ l c h a m l a r
i n t e r v a l i , m m
|
K v a l i t e t u c h u n j o i z l i k l a r q i y m a t l a r i , m k m
|
0 1
|
0
|
1
|
2
|
3
|
4
|
5
|
6
|
7
|
3 g a c h a
|
0 , 3
|
0 , 5
|
0 , 8
|
1 , 2
|
2
|
3
|
4
|
6
|
1 0
|
3 d a n o r t . 6 g a c h a
|
0 , 4
|
0 , 6
|
1
|
1 , 5
|
2 , 5
|
4
|
5
|
8
|
1 2
|
6 d a n o r t i q 1 0
g a c h a
|
0 , 4
|
0 , 6
|
1
|
1 , 5
|
2 , 5
|
4
|
6
|
9
|
1 2
|
1 0 “ 1 8 “
|
0 , 5
|
0 , 8
|
1 , 2
|
2
|
3
|
5
|
8
|
1 1
|
1 8
|
1 8 “ 3 0 “
|
0 , 6
|
1
|
1 , 5
|
2 , 5
|
4
|
6
|
9
|
1 3
|
2 1
|
3 0 “ 5 0 “
|
0 , 6
|
1
|
1 , 5
|
2 , 5
|
4
|
7
|
1 1
|
1 6
|
2 5
|
5 0 “ 8 0 “
|
0 , 8
|
1 , 2
|
2
|
3
|
5
|
8
|
1 3
|
1 9
|
3 0
|
8 0 “ 1 2 0 “
|
1
|
1 , 5
|
2 , 5
|
4
|
6
|
1 0
|
1 5
|
2 2
|
3 5
|
1 2 0 “ 1 8 0 “
|
1 , 2
|
2
|
3 , 5
|
5
|
8
|
1 2
|
1 8
|
2 5
|
4 0
|
1 8 0 “ 2 5 0 “
|
2
|
3
|
4 , 5
|
7
|
1 0
|
1 4
|
2 0
|
2 9
|
4 6
|
2 5 0 “ 3 1 5 “
|
2 , 5
|
4
|
6
|
8
|
1 2
|
1 6
|
2 3
|
3 2
|
5 2
|
3 1 5 “ 4 0 0 “
|
3
|
5
|
7
|
9
|
1 3
|
1 8
|
2 5
|
3 2
|
5 2
|
4 0 0 “ 5 0 0 “
|
4
|
6
|
8
|
1 0
|
1 5
|
2 0
|
2 7
|
4 0
|
6 3
|
1 - j a d v a l n i n g d a v o m i
O ‘ l c h a m l a r
i n t e r v a l i , m m
|
K v a l i t e t u c h u n j o i z l i k l a r q i y m a t l a r i , m k m
|
8
|
9
|
1 0
|
1 1
|
1 2
|
1 3
|
1 4
|
1 5
|
1 6
|
3 g a c h a
|
1 4
|
2 5
|
4 0
|
6 0
|
1 0 0
|
1 4 0
|
2 5 0
|
4 0 0
|
6 0 0
|
3 d a n o r t . 6 g a c h a
|
1 8
|
3 0
|
4 8
|
7 5
|
1 2 0
|
1 8 0
|
3 0 0
|
4 8 0
|
7 5 0
|
6 “ 1 0 “
|
2 2
|
3 6
|
5 8
|
9 0
|
1 5 0
|
2 2 0
|
3 6 0
|
5 8 0
|
9 0 0
|
1 0 “ 1 8 “
|
2 7
|
4 3
|
7 0
|
1 1 0
|
1 8 0
|
2 7 0
|
4 3 0
|
7 0 0
|
1 1 0 0
|
1 8 “ 3 0 “
|
3 3
|
5 2
|
8 4
|
1 3 0
|
2 1 0
|
3 3 0
|
5 2 0
|
8 4 0
|
1 3 0 0
|
3 0 “ 5 0 “
|
3 9
|
6 2
|
1 0 0
|
1 6 0
|
2 5 0
|
3 9 0
|
6 2 0
|
1 0 0 0
|
1 6 0 0
|
5 0 “ 8 0 “
|
4 6
|
7 4
|
1 2 0
|
1 9 0
|
3 0 0
|
4 6 0
|
7 4 0
|
1 2 0 0
|
1 9 0 0
|
8 0 “ 1 2 0 “
|
5 4
|
8 7
|
1 4 0
|
2 2 0
|
3 5 0
|
5 4 0
|
8 7 0
|
1 4 0 0
|
2 2 0 0
|
1 2 0 “ 1 8 0 “
|
6 3
|
1 0 0
|
1 6 0
|
2 5 0
|
4 0 0
|
6 6 0
|
1 0 0 0
|
1 6 0 0
|
2 5 0 0
|
1 8 0 “ 2 5 0 “
|
7 2
|
1 1 5
|
1 8 5
|
2 9 0
|
4 6 0
|
7 2 0
|
1 1 5 0
|
1 8 5 0
|
2 9 0 0
|
2 5 0 “ 3 1 5 “
|
8 1
|
1 3 0
|
2 1 0
|
3 2 0
|
5 2 0
|
8 1 0
|
1 3 0 0
|
2 1 0 0
|
3 2 0 0
|
3 1 5 “ 4 0 0 “
|
8 9
|
1 4 0
|
2 3 0
|
3 6 0
|
5 7 0
|
8 9 0
|
1 4 0 0
|
2 3 0 0
|
3 6 0 0
|
4 0 0 “ 5 0 0 “
|
9 7
|
1 5 5
|
2 5 0
|
4 0 0
|
6 3 0
|
9 7 0
|
1 5 5 0
|
2 5 0 0
|
4 0 0 0
|
N o m i n a l o ‘ l c h a m l a r u c h u n a s o s i y v a l h a m d a a s o s i y t e s h i k o g ‘ i s h l a r i , m k m ( G O S T 2 5 3 4 6 – 8 2 b o ‘ y i c h a )
2 - j a d v a l
O ‘ l c h a m l a r i n t e r v a l i , m m
|
B a r c h a k v a l i t e t d a g i v a l l a r n i n g y u q o r i o g ‘ i s h i
( – e s )
|
B a r c h a k v a l i t e t l a r q u y i o g ‘ i s h ( + e i )
|
a
|
b
|
c
|
d
|
e
|
f
|
g
|
h
|
j s
|
k
|
m
|
n
|
P
|
B a r c h a k v a l i t e t l a r
|
4 … 7
|
3 g a c h a 7
|
B a r c h a k v a l i t e t l a r
|
3 g a c h a
|
2 7 0
|
1 4 0
|
6 0
|
2 0
|
1 4
|
6
|
2
|
0
|
C H a k k a o g ‘ i s h l a r ± 0 , 5 I T
|
0
|
0
|
2
|
4
|
6
|
3 d a n o r t . 6 g a c h a
|
2 7 0
|
1 4 0
|
7 0
|
3 0
|
2 0
|
1 0
|
4
|
0
|
1
|
0
|
4
|
8
|
1 2
|
6 « 1 0 «
|
2 8 0
|
1 5 0
|
8 0
|
4 0
|
2 5
|
1 3
|
5
|
0
|
1
|
0
|
6
|
1 0
|
1 5
|
1 0 « 1 4 «
|
2 9 0
|
1 5 0
|
9 5
|
5 0
|
3 2
|
1 6
|
6
|
0
|
1
|
0
|
7
|
1 2
|
1 8
|
1 4 « 1 8 «
|
1 8 « 2 4 «
|
3 0 0
|
1 6 0
|
1 1 0
|
6 5
|
4 0
|
2 0
|
7
|
0
|
2
|
0
|
8
|
1 5
|
2 2
|
2 4 « 3 0 «
|
3 0 « 4 0 «
|
3 1 0
|
1 7 0
|
1 2 0
|
8 0
|
5 0
|
2 5
|
9
|
0
|
2
|
0
|
9
|
1 7
|
2 6
|
4 0 « 5 0 «
|
3 2 0
|
1 8 0
|
1 3 0
|
5 0 « 6 5 «
|
3 4 0
|
1 9 0
|
1 4 0
|
1 0 0
|
6 0
|
3 0
|
1
0
|
0
|
2
|
0
|
1 1
|
2 0
|
3 2
|
6 5 « 8 0 «
|
3 6 0
|
2 0 0
|
1 5 0
|
8 0 « 1 0 0 «
|
3 8 0
|
2 2 0
|
1 7 0
|
1 2 0
|
7 2
|
3 6
|
1
2
|
0
|
3
|
0
|
1 3
|
2 3
|
3 7
|
1 0 0 « 1 2 0 «
|
4 1 0
|
2 4 0
|
1 8 0
|
1 2 0 « 1 4 0 «
|
4 6 0
|
2 6 0
|
2 0 0
|
1 4 5
|
8 5
|
4 3
|
1
4
|
0
|
3
|
0
|
1 5
|
2 7
|
4 3
|
1 4 0 « 1 6 0 «
|
5 2 0
|
2 8 0
|
2 1 0
|
1 6 0 « 1 8 0 «
|
5 8 0
|
3 1 0
|
2 3 0
|
1 8 0 « 2 0 0 «
|
6 6 0
|
3 4 0
|
2 4 0
|
1 7 0
|
1 0 0
|
5 0
|
1
5
|
0
|
4
|
0
|
1 7
|
3 1
|
5 0
|
2 0 0 « 2 2 5 «
|
7 4 0
|
3 8 0
|
2 6 0
|
2 2 5 « 2 5 0 «
|
8 2 0
|
4 2 0
|
2 8 0
|
2 5 0 « 2 8 0 «
|
9 2 0
|
4 8 0
|
3 0 0
|
1 9 0
|
1 1 0
|
5 6
|
1
7
|
0
|
4
|
0
|
2 0
|
3 4
|
5 6
|
2 8 0 « 3 1 5 «
|
1 0 5
0
|
5 4 0
|
3 3 0
|
3 1 5 « 3 5 5 «
|
1 2 0
0
|
6 0 0
|
3 6 0
|
2 1 0
|
1 2 5
|
6 2
|
1
8
|
0
|
4
|
0
|
2 1
|
3 7
|
6 2
|
3 5 5 « 4 0 0 «
|
1 3 5
0
|
6 8 0
|
4 0 0
|
4 0 0 « 4 5 0 «
|
1 5 0
0
|
7 6 0
|
4 4 0
|
2 3 0
|
1 3 5
|
6 5
|
2
0
|
|
5
|
0
|
2 3
|
4 0
|
6 8
|
4 5 0 « 5 0 0
|
1 6 5
0
|
8 4 0
|
4 8 0
|
V a l l a r
|
B a r c h a k v a l i t e t l a r
|
|
|
A
|
B
|
C
|
D
|
E
|
F
|
G
|
H
|
J s
|
K – N 5 - ж а д .
к .
|
P
|
Т e s h i k n i n g q u y i o g ‘ i s h i ( + E I )
|
|
|
E s l a t m a l a r : 1 . 1 m m g a c h a b u l g a n o ‘ l c h a m l a r u c h u n b a r c h a k v a l i t e t l a r d a a , b , A , B
o g ‘ i s h l a r t a y i n l a n m a g a n ( k o ‘ z d a t u t i l m a g a n ) .
2 . c d , e f , i f g , j v a J , o g ‘ i s h l a r j u d a k a m q o ‘ l l a n i l g a n i u c h u n j a d v a l d a k e l t i r i l m a g a n .
3 . 7 d a n 1 1 g a c h a b o ‘ l g a n ± I T / 2 v a j s ( J s ) s i m m e t r i k o g ‘ i s h l a r e n g y a q i n t o q s o n g a c h a y a x l i t l a n i s h i m u m k i n ( I T n i n g k i q m a t l a r i t o q b o ‘ l s a ) .
|
2 - j a d v a l n i n g d a v o m i
N o m i n a l o ‘ l c h a m l a r u c h u n a s o s i y v a l h a m d a a s o s i y t e s h i k o g ‘ i s h l a r i , m k m
( G O S T - 2 5 3 4 6 – 8 2 b o ‘ y i c h a )
O ‘ l c h a m l a r
i n t e r v a l i , m m
|
B a r c h a k v a l i t e t l a r u c h u n v a l n i n g q u y i o g i s h i ( + e i )
|
∆ k v a l i t e t l a r
u c h u n
|
|
r
|
s
|
t
|
u
|
v
|
x
|
x
|
z
|
z a
|
z b
|
z c
|
|
|
B a r c h a k v a l i t e t l a r
|
5
|
6
|
7
|
8
|
|
3 g a c h a
|
1 0
|
1 4
|
-
|
1 8
|
-
|
2 0
|
-
|
2 6
|
3 2
|
4 0
|
6 0
|
0
|
|
3 d a n o r t . 6
g a c h a
|
1 5
|
1 9
|
-
|
2 3
|
-
|
2 8
|
-
|
3 5
|
4 2
|
5 0
|
8 0
|
1
|
3
|
4
|
6
|
|
6 « 1 0 «
|
1 9
|
2 3
|
-
|
2 8
|
-
|
3 4
|
-
|
4 2
|
5 2
|
6 7
|
9 7
|
2
|
3
|
6
|
7
|
|
1 0 « 1 4 «
|
2 3
|
2 8
|
-
|
3 3
|
-
|
4 0
|
-
|
5 0
|
6 4
|
9 0
|
1 3 0
|
3
|
3
|
7
|
9
|
|
1 4 « 1 8 «
|
3 9
|
4 5
|
-
|
6 0
|
7 7
|
1 0 8
|
1 5 0
|
|
1 8 « 2 4 «
|
2 8
|
3 5
|
-
|
4 1
|
4 7
|
5 4
|
6 3
|
7 3
|
9 8
|
1 3 6
|
1 8 8
|
3
|
4
|
8
|
1 2
|
|
2 4 « 3 0 «
|
4 1
|
4 8
|
5 5
|
6 4
|
7 5
|
8 8
|
1 1 8
|
1 6 0
|
2 1 8
|
|
3 0 « 4 0 «
|
3 4
|
4 3
|
4 8
|
6 0
|
6 8
|
8 0
|
9 4
|
1 1 2
|
1 4 8
|
2 0 0
|
2 7 4
|
4
|
5
|
9
|
1 4
|
|
4 0 « 5 0 «
|
5 4
|
7 0
|
8 1
|
9 7
|
1 1 4
|
1 3 6
|
1 8 0
|
2 4 2
|
3 2 5
|
|
5 0 « 6 5 «
|
4 1
|
5 3
|
6 6
|
8 7
|
1 0 2
|
1 2 2
|
1 4 4
|
1 7 2
|
2 2 6
|
3 0 0
|
4 0 5
|
5
|
6
|
1
1
|
1 6
|
|
6 5 « 8 0 «
|
4 3
|
5 9
|
7 5
|
1 0 2
|
1 2 0
|
1 4 6
|
1 7 4
|
2 1 0
|
2 7 4
|
3 6 0
|
4 8 0
|
|
8 0 « 1 0 0 «
|
5 1
|
7 1
|
9 1
|
1 2 4
|
1 4 6
|
1 7 8
|
2 1 4
|
1 5 8
|
3 3 5
|
4 4 5
|
5 8 5
|
5
|
7
|
1
3
|
1 9
|
|
1 0 0 « 1 2 0 «
|
5 4
|
7 9
|
1 0 4
|
1 4 4
|
1 7 2
|
2 1 0
|
2 5 4
|
2 1 0
|
4 0 0
|
5 2 5
|
6 9 0
|
|
1 2 0 « 1 4 0 «
|
6 3
|
9 2
|
1 2 2
|
1 7 0
|
2 0 2
|
2 4 8
|
3 0 0
|
3 6 5
|
4 7 0
|
6 2 0
|
8 0 0
|
6
|
7
|
1
5
|
2 3
|
|
1 4 0 « 1 6 0 «
|
6 5
|
1 0 0
|
1 3 4
|
1 9 0
|
2 2 8
|
2 8 0
|
3 4 0
|
4 1 5
|
5 3 5
|
7 0 0
|
9 0 0
|
|
1 6 0 « 1 8 0 «
|
6 8
|
1 0 8
|
1 4 6
|
2 1 0
|
2 5 2
|
3 1 0
|
3 8 0
|
4 6 5
|
6 0 0
|
7 8 0
|
1 0 0 0
|
|
1 8 0 « 2 0 0 «
|
7 7
|
1 2 2
|
1 6 6
|
2 3 6
|
2 8 4
|
3 5 0
|
4 2 5
|
5 2 0
|
6 7 0
|
8 8 0
|
1 1 5 0
|
6
|
9
|
1
7
|
2 6
|
|
2 0 0 « 2 2 5 «
|
8 0
|
1 4 0
|
1 9 6
|
2 8 4
|
3 4 0
|
4 2 5
|
5 2 0
|
6 4 0
|
8 2 0
|
1 0 5
0
|
1 3 2 5
|
|
2 2 5 « 2 5 0 «
|
8 4
|
1 4 0
|
1 9 6
|
2 8 4
|
3 4 0
|
4 2 5
|
5 2 0
|
6 4 0
|
8 2 0
|
1 0 5
0
|
1 3 5 0
|
|
2 5 0 « 2 8 0 «
|
9 4
|
1 5 8
|
2 1 8
|
3 1 5
|
3 8 5
|
4 7 5
|
5 8 0
|
7 1 0
|
9 2 0
|
1 2 0
0
|
1 5 5 0
|
7
|
9
|
2
0
|
2 9
|
|
2 8 0 « 3 1 5 «
|
9 8
|
1 7 0
|
2 4 0
|
3 5 0
|
4 2 5
|
5 2 5
|
6 5 0
|
7 9 0
|
1 0 0 0
|
1 3 0
0
|
1 7 0 0
|
|
3 1 5 « 3 5 5 «
|
1 0 8
|
1 9 0
|
2 6 8
|
3 9 0
|
4 7 5
|
5 9 0
|
7 3 0
|
9 0 0
|
1 1 5 0
|
1 5 0
0
|
1 9 0 0
|
7
|
1
1
|
2
1
|
3 2
|
|
3 5 5 « 4 0 0 «
|
1 1 4
|
2 0 8
|
2 9 4
|
4 3 5
|
5 3 0
|
6 6 0
|
8 2 0
|
1 0 0
0
|
1 3 0 0
|
1 6 5
0
|
2 1 0 0
|
|
4 0 0 « 4 5 0 «
|
1 2 6
|
2 3 5
|
3 3 0
|
4 9 0
|
5 9 5
|
7 4 0
|
9 2 0
|
1 1 0
0
|
1 4 5 0
|
1 8 5
0
|
2 4 0 0
|
7
|
1
3
|
2
3
|
3 4
|
|
4 5 0 « 5 0 0
|
1 3 2
|
2 5 2
|
3 6 0
|
5 4 0
|
6 6 0
|
8 2 0
|
1 0 0
0
|
1 2 5
0
|
1 6 0 0
|
2 1 0
0
|
2 6 0 0
|
|
T e s h i k l a r
|
7 d a n o r t . ( 5 - f o r m u l a n i q a r a n g )
|
|
|
R
|
S
|
T
|
U
|
V
|
X
|
Y
|
Z
|
Z A
|
Z B
|
Z C
|
|
t e s h i k n i n g y u q o r i g i o g ‘ i s h i ( - E S )
|
|
|
E s l a t m a l a r : 1 . 1 m m g a c h a b o ‘ l g a n o ‘ l c h a m l a r u c h u n b a r c h a k v a l i t e t l a r d a a , b , A , B
o g ‘ i s h l a r t a y i n l a n m a g a n ( k o ‘ z d a t u t i l m a g a n ) .
2 . c d , e f , i f g , j v a J , o g ‘ i s h l a r j u d a k a m q o ‘ l l a n i l g a n i u c h u n j a d v a l d a k e l t i r i l m a g a n .
3 . 7 d a n 1 1 g a c h a b o ‘ l g a n ± I T / 2 v a j s ( J s ) s i m m e t r i k o g ‘ i s h l a r e n g y a q i n t o q s o n g a c h a y a x l i t l a n i s h i m u m k i n ( I T n i n g q i y m a t l a r i t o k b o ‘ l s a ) .
|
Foydalanilgan adabiyotlar ro‘yxati
1. Hebra, Alex. The Physics of Metrology. Springer. 2010
Waldemar Nawrocki. Introduction to Quantum Metrology: Quantum Standards and
Instrumentation 2015th Edition/ Springer. London, 2015, 273 page.
2. G.K.Vijayaraghavan., R.Rajappan., Engineering Metrology and Measurements., For 5th Semester Mechanical and Automobile Engineering. As per the Latest Anna
University Syllabus – Reg., 2008.
3. Ismatullayev P.R., Matyakubova P.M., To‘rayev Sh.A. Metrologiya, standartlashtirish va sertifikatlashtirish: Darslik. Toshkent “Lesson-Press”, 2015,
4. Ismatullayev P.R., Qodirova Sh.A. Metrologiya asoslari: O‘quv qo‘llanma, Toshkent “Taffakur” nashriyoti 2012, 304 b.
5. Физические основы измерений: учебное пособие / А. И. Сюрдо, Д. Ю.
Бирюков – Екатеринбург: УрФУ 2013. 143 с.
6. Полунин В.М. Физические основы измерений: Конспект лекций /В.М. Полунин, Г.Т. Сычев, А.И. Шумаков; Курск. гос. техн. ун-т. Курск, 2004. 261 с.
7. Медякова Э.И. Физические основы измерений: Письменные лекции – СПб. СЗТУ, 2005 – 66с.
8. Матякубова П.М., Исматуллаев П.Р., Мухаммедханов У.Т. Физические
основы измерений. Методическое указания, Ташкент -2011, 188с
9. Матякубова П.М., Исматуллаев П.Р., Эгамбердиев Б.Э. Ўлчашларнинг физикавий асослари. Методическое указания, Ташкент -2012, 188с
Elektron resurslar
www.gov.uz – O‘zbekiston Respublikasi xukumat portali.
www.lex.uz – O‘zbekiston Respublikasi Qonun hujjatlari ma’lumotlari milliy bazasi.
www.catback.ru - научные статьи и учебные материалы www.uniiftri.ru
www.physics.gubkin.ru
http:\\www.standart.uz – “O‘zstandart” agenligi
http:\\www.smsiti.uz - Standartlashtirish, metrologiya va sertifikatlashtirish ilmiy tadqiqot instituti
http:\\www.easc.org.by – Межгосударственный Совет по стандартизации,
метрологии и сертификации Содружества Независимых Государств. http:\\www.ziyonet.uz – Ta’lim portali
MUNDARIJA
1
|
O‘lchash natijalarining aniqligini baholash ……………………..
|
3
|
2
|
Issiqlik kattaliklarini o‘lchash usullari ……………………………
|
8
|
3
|
Elektromagnit kattaliklarini o‘lchash usullari …………………….
|
19
|
4
|
Mexanik kattaliklarni o‘lchash usullari va vositalari……………...
|
21
|
5
|
Fizik o‘lchashlar usullari va xatoliklarni qayta ishlash …………..
|
28
|
6
|
Chiziqli o‘lchamlarni o‘lchash ……………………………………
|
32
|
7
|
Massa va og‘irlikni aniqlash ……………………………………..
|
38
|
8
|
Chastota va vaqt birligi boshlang‘ich etaloni va massa birligi
|
|
|
milliy boshlang‘ich etaloni ……………………………………….
|
42
|
9
|
Ilovalar ……………………………………………………………
|
45
|
10
|
Foydalanilgan adabiyotlar ro‘yxati ……………………………….
|
48
|
50
51
52
Do'stlaringiz bilan baham: |