The Digital Transformation Playbook: Rethink Your Business for the Digital Age
Part of data strategy is developing a legal, risk management, and secu-
Download 1.53 Mb. Pdf ko'rish
|
The-Digital-Transformation-Playbook-Rethink-Your-Business-for-the-Digital-Age-PDFDrive.com-
Part of data strategy is developing a legal, risk management, and secu- rity plan. Rather than letting fear of risk postpone action (and likely not really reduce risks), leaders need to establish assessment, responsibility, and planning, with appropriate outside partners to support them. The risks of data theft are unavoidable, but they can be reduced if risk reduction is a leadership priority. Consumer attitudes are also crucial to data strategy. Beyond the threats of identity theft and cybercriminals, many consumers are more generally concerned about privacy and the increasing amount of information busi- nesses gather about them. Much of the data about customers is collected in ways that the public is only vaguely aware of, at best. Advocacy around consumer data privacy has raised the possibility of government regulation in many markets. Start-ups like Datacoup, Handshake, and Meeco have argued that individuals should own their personal data and be paid for access to it. They hope to create tools that allow customers to store their interests, preferences, social data, and credit card transactions and choose how much of this information to sell to companies for a fixed price. With rising concerns about ownership of personal data, it is increas- ingly important that any data strategy be based on a transparent value exchange with the customer: an exchange in which the customer knows that data is being collected and sees the benefits they are receiving in return. This is the foundation of loyalty programs with points and rewards. It is also the reason customers willingly provide personal ratings on a service like Netflix and are not alarmed when Amazon suggests products based on their recent browsing history. When customers can easily see both the ways that companies are gathering data and the benefits they are gaining as a result, they will be more likely to allow sustainable access to businesses. 8 As sensors, networks, and computing become embedded in every part of our lives, the data that is available to business continues to grow exponen- tially. For some managers, this data deluge will seem overwhelming. Other managers may tell themselves that “I don’t operate in a very data-intensive industry” simply because that was the case a few short years ago. But the world has changed. Every business now has access to data. The strategic challenge for business is to develop the clear vision and the growing capability needed to put data to work in the service of 122 T U R N D A T A I N T O A S S E T S innovation and value creation. By treating data as a key intangible asset to build over time, every business can develop a data strategy that informs critical decision making and generates new value for business and cus- tomer alike. Data allows us to continually experiment, learn, and test our ideas. This means data can do more than power products, optimize processes, and deliver more-relevant customer interactions; it can also help change the way organizations learn and innovate. This different kind of learning— through constant experimentation—is at the heart of a profoundly different approach to innovation. That new approach to innovation is the subject of the next chapter. 5 Innovate by Rapid Experimentation Think of the last time you used a search engine. Every time you type a query into Google or a similar service, you are the subject of a human experiment. Google presents you with search results and measures which ones you click on, in what order, and how quickly. And in subtle ways, those search results that you see are constantly changing. Changes occur in the primary listings, in the search ads you are shown, and in the auto- complete guesses that start to appear after you type your first letter. Google is constantly trying to learn more about how to innovate and improve its search service for users. Which links are you most likely to be looking for? How should it group them? (Local services vs. global ones? Recent news stories vs. company webpages? Links to subsections of a website? Biograph- ical tidbits about the politician whose name you just entered?) To improve its products, Google doesn’t sit down with customer focus groups to discuss their search engine experiences. Nor does it convene a committee to vote on which new features to implement. Instead, the company is constantly experimenting, testing each of its new ideas, measuring customer response, and iterating on what it learns. INNOVATION 124 I N N O V A T E B Y R A P I D E X P E R I M E N T A T I O N We can define innovation as any change to a business product, ser- vice, or process that adds value. This change can range from an incremental improvement to the creation of something totally new and unprecedented. For Google, an innovation may be launching a completely new product such as Gmail, Android phones, Google Maps, or its Chromebook lap- top line. But innovation at Google also includes the continuous process of refining, adding and subtracting features, and evolving the user interface and experience. As Scott Anthony says, innovation is not just about “big bangs”; it is about anything new that has impact. 1 The fourth domain of digital transformation is innovation—the pro- cess by which new ideas are developed, tested, and brought to the mar- ket by businesses. Traditionally, innovation was singularly focused on the finished product. Testing ideas was relatively difficult and expensive, so decisions and early ideas were based on the analysis, intuition, and senior- ity of managers involved in the project. Actual market feedback tended to come very late in the process (sometimes after public release), so avoiding a marked failure was an overriding concern. In the digital age, enterprises need to innovate in a radically different fashion, based on rapid experimentation and continuous learning. Rather than concentrating primarily on a finished product, this approach focuses on identifying the right problem and then developing, testing, and learn- ing from multiple possible solutions. Like the lean start-ups of Silicon Val- ley, this approach focuses on developing minimum viable prototypes and iterating them repeatedly—before, during, and even after launch. At every stage, assumptions are tested and decisions are made based on validation by customer and market responses. Leaders are those who know how to pose the right questions, not claim the right answers. As digital technolo- gies make it easier and faster than ever to test ideas, this new approach to innovation is essential to bringing new ideas to market faster and with less cost, less risk, and greater organizational learning. (See table 5.1.) This chapter explores how rapid experimentation is transforming the way innovation happens and how digital technologies are making experi- mentation both more possible and more necessary. We will consider two complementary methods of experimentation for innovators. We will also examine how organizations must change to become effective experimenters and what the real financial benefits are of learning to take an experimental approach to innovation. The chapter presents two strategic planning tools, each one offering a method for designing, running, and capturing value from innovation experiments. It also explores the four paths to scaling I N N O V A T E B Y R A P I D E X P E R I M E N T A T I O N 125 up an innovation and offers guidance on choosing the appropriate one. By applying these frameworks and tools, businesses can learn faster, fail cheaper and smarter, and shorten the time to successful innovation. But, first, let’s look at a case study of a company using experimentation to rethink how it innovates for customers. How to Grow the Innovation Premium: Intuit’s Story Since its founding in 1983, Intuit has focused on designing and selling great accounting and finance tools for individuals and small businesses. With a track record of innovative products, the company grew from a start-up to a company worth billions. But after twenty-four years, founder Scott Cook realized the firm needed to change its model of product innovation if it was going to continue to grow. He started a new initiative with Kaaren Hanson that focused on rapid experimentation. When I met Hanson in 2013, she was chief innovation officer, and Intuit had run over 1,300 experiments in the previous six months. To provide a sense of how this new model for innovation worked, she described a project in India. 2 Deepa Bachu was the head of Intuit’s emerging markets team. The team had been tasked with developing a product for India’s farmers, who make up the bulk of the economy. After spending time immersed with small farmers to discover their pain points and customer needs, the team found a pressing problem for those who were selling perishable goods, such as Table 5.1 Innovation: Changes in Strategic Assumptions from the Analog to the Digital Age From To Decisions made based on intuition and seniority Decisions made based on testing and validating Testing ideas is expensive, slow, and difficult Testing ideas is cheap, fast, and easy Experiments conducted infrequently, by experts Experiments conducted constantly, by everyone Challenge of innovation is to find the right solution Challenge of innovation is to solve the right problem Failure is avoided at all cost Failures are learned from, early and cheaply Focus is on the “finished” product Focus is on minimum viable prototypes and iteration after launch 126 I N N O V A T E B Y R A P I D E X P E R I M E N T A T I O N produce. These farmers, they learned, could afford to travel to only one market (or mandi) when it was time to find a merchant to buy their crop. When they did, they negotiated prices with a mandi agent, but there was a complete lack of market transparency. The mandi agents would actually put a cloth over their hand when indicating to one farmer the price they would pay for goods so that the next farmer in line could not see the price. Without access to refrigeration, the farmers had limited time to sell their perishables and no way to find the best buyer based on local supply and demand. In many cases, the farmers were forced to unload their produce for deeply discounted prices just to bring some income home. Bachu’s team set a goal: develop a product that could help farmers raise their income from crop sales by 10 percent. Then they set to work generating ideas. 3 The team’s first solution was to create an eBay-like marketplace where buyers and sellers could find each other and negotiate prices before sell- ers loaded their produce and traveled to market. But when they presented mock-ups of the product to mandi agents, they discovered the agents would be unwilling to offer a price for produce without inspecting it first in person. The team’s second solution was to create a service that would let farmers alert each other to what crops they were growing so that each farmer could make a better guess as to what crops would be in higher demand. But when the Intuit team tested this idea, they found that farmers were unclear how to act on the information. The team’s third solution was to provide an SMS notification service that would inform farmers of the prices being offered at various markets before they left their farms. Bachu realized there were several assumptions behind this product idea: Could the farmers read the text messages? Would the mandi agents provide prices to Intuit to share? Would they honor those prices when the farmers arrived at the market? The team decided to run an experiment and recruited fifty farmers and five mandi agents willing to try out the notification service. For six weeks, two Intuit team members went into the markets to gather pricing information, while a third team member sat in a back office texting each farmer the prices of produce in various locations. This bare-bones operation would never scale, but it allowed the team to find out if the premise of an eventual mobile technology solution would actually work. At the end of the test, they found that both farmers and mandi agents had adopted it and that the farmers’ incomes were raised by 20 percent—twice the original goal. That impact continued as the final product, now called Fasal, was developed and rolled out as an automated service providing customized text messages to the more than 1 million participating farmers. 4 I N N O V A T E B Y R A P I D E X P E R I M E N T A T I O N 127 The experiment-driven approach to innovation was not isolated to emerging markets but became the hallmark of Intuit’s company-wide efforts to rethink innovation. “We have gone from a company of 8,000 employees to 8,000 innovators,” Hanson told me. 5 Over the five years the company had been using this new approach, its innovation premium—the portion of its market capitalization attributable to future innovation—grew from 20 to 29 percent, adding $1.8 billion in value. 6 In shifting to a culture of rapid experimentation, the company had made a bet on running a large enterprise as a lab for continuous learning. That bet paid off big. Experimentation Is Learning Experimentation can be defined as an iterative process of learning what does and does not work. The goal of a business experiment is actually not a product or solution; it is learning—the kind of learning about customers, markets, and possible options that will lead you to the right solution. When you innovate through experimentation, you don’t try to avoid wrong ideas; rather, you aim to quickly and cheaply test as many promising ideas as possible in order to learn which ones will work. This is very dif- ferent than a traditional innovation process: analyze the market, generate ideas, debate internally, pick a solution, and then develop it through many stages of quality testing before launching it and getting feedback from actual customers. In developing Fasal for the Indian market, the Intuit team didn’t convene meetings to debate which of their three proposed solutions was the optimal one. To test their assumptions, they put their ideas, in rough form, in front of the actual farmers and merchants who would have to use the final product. This approach requires a paradigm shift from innova- tion based on analysis and expertise to innovation based on ideation and experimentation for constant learning. This shift toward a more iterative, learning-based model for innovation has been growing for several years and in many quarters. It is at the heart of Steve Blank’s customer validation model and Eric Ries’s writing on “lean start-up” methods. It is integral to the model of design thinking that prod- uct development firms like IDEO and frog have been using with clients like Apple, JetBlue, Target, Disney, Intel, and SAP. With the rise of digital A/B testing, constant experimentation has become the norm for more and more products, services, and communication channels. It has become fash- ionable to take the stance of a Silicon Valley start-up and assert that the 128 I N N O V A T E B Y R A P I D E X P E R I M E N T A T I O N product is never finished and that every new innovation should be released as a beta ready for continuous evolution. But innovation in an enterprise (seeking to launch a new venture or offering or to improve an existing one) is not exactly the same as innova- tion in a three-person start-up (whose new app may be the entire focus of the organization). And not every product can be launched to the full public in beta (e.g., think of a car). Some of the principles of experimenta- tion therefore need to be adapted or translated to the context of an existing enterprise. And, in fact, not everything called an experiment is the same. Different types of business experiments may not be designed or run in the same manner or be used to answer the same kinds of questions. But all business experiments do have this in common: they seek to increase learn- ing by testing ideas and seeing what works and what doesn’t. Two Types of Experiments Think back to the two examples we have seen so far: Intuit’s experimenta- tion to develop Fasal and Google’s experimentation to continuously improve its search engine. Both companies are experimenting, but there are many differences. Google is testing on the actual product: the real search engine used by its customers. With Fasal, Intuit intentionally tested simple mock- ups and a rough prototype of what an actual product might eventually be. Google’s testing is in real time, with thousands or millions of subjects whose behaviors can be compared scientifically to identify meaningful statistical differences. With Fasal, the experiments were conducted with small groups of customers, and the results would not appear to pass muster with any- one’s statistics teacher (“What’s the standard deviation among five mandi agents?”). For Google, the goal of innovation is to improve something known. For Fasal, the goal was to develop something completely novel. In fact, a wide range of practices can be called business experiments. The most fundamental difference is between more formal (scientific) experiments and the kind of informal experimentation that is common to new product development. This is not due just to the organizational culture of the business that is doing the experimenting (i.e., experimental “style”), nor is it due to the ready availability of a large sample size (even if Intuit had access to 1,000 farmers, it wouldn’t have made sense to use a formal scien- tific experiment). Rather, we can see two types of business experimentation that are suited for two types of learning. I N N O V A T E B Y R A P I D E X P E R I M E N T A T I O N 129 I will call these two types convergent and divergent because I prefer to name them by their function rather than their form (e.g., formal vs. informal). Convergent experiments are best suited for learning that elimi- nates options and converges on a specific answer to a clearly defined ques- tion (e.g., Which of these three designs is preferred by the customer?). Download 1.53 Mb. Do'stlaringiz bilan baham: |
Ma'lumotlar bazasi mualliflik huquqi bilan himoyalangan ©fayllar.org 2024
ma'muriyatiga murojaat qiling
ma'muriyatiga murojaat qiling