The Failures of Mathematical Anti-Evolutionism


Download 0.99 Mb.
Pdf ko'rish
bet24/108
Sana31.01.2023
Hajmi0.99 Mb.
#1142303
1   ...   20   21   22   23   24   25   26   27   ...   108
Bog'liq
The Failures of Mathematical Anti-Evolutionism (Jason Rosenhouse) (z-lib.org)

Time
0
Position
h
t
figure 3.3 An abstract model for the trajectory of a thrown ball. We
place time on the x-axis and position (or height) on the y-axis. The
dotted line represents the maximum height attained by the ball; note
that the tangent line is horizontal at that point.


3.1 math is simple, reality is complex 63
You probably encountered diagrams of this sort in a high school
math or science class. The diagram is called the “graph” of the
function, and we should be clear that this is just an entirely different
use of the word “graph” from our previous example. At any given
time, the ball will be found at some height above the ground. It is
convenient to place time on the x-axis and position (which is the
same as height in this case) on the y-axis. We can then draw a curve
that shows the ball’s height above the ground at any point in time.
Presumably we start our stopwatch at the moment the ball leaves our
hand, and we can take the ball to be at ground level when we start the
experiment. (We will not worry about details like the height of the
person throwing the ball.)
A smooth curve of this sort is referred to as a “continuous
function,” and we can read off a lot of information about the path of
the ball from this simple picture. For example, the maximum height
occurs at the dotted line, and I have labeled that point on the y-axis.
The dotted line is called the “tangent line” to the curve at that point,
and you will notice something interesting about the tangent line at
the maximum height: It is perfectly flat. The tangent line at a point a
little to the left of the maximum would be pointing up since the ball
is still rising, and a little to the right it would be pointing down since
the ball is now falling.
We could also note that the experiment ends at the moment
when the ball returns to the ground, which corresponds to 0 on the y-
axis. I have labeled that point with a on the x-axis. Mathematicians
refer to points like this, where the function crosses the x-axis, as the
“roots” of the function.
The point is that if you want to understand the path of a
projectile, you do not study projectiles. Instead you study continuous
functions. Nor do you ask questions like, “How high will it go,
and where will it land?” Instead you ask, “How do I find the roots
of a continuous function?” or “How do I locate the points where
the tangent line is perfectly flat?” The branch of mathematics that
answers such questions is calculus.


64 3 parallel tracks
Let us push this a little further, though I hasten to add that it
will be unnecessary to understand every detail I present here and in
the next few paragraphs.
After we throw the ball, why does its path change at all? Why
does it not just leave your hand in a straight line and keep going until
it flies off into space? The answer is that there is a gravitational force
on the ball, pulling it down. The only other significant force is air
resistance – the ball has to push the air molecules out of the way as
it moves, and the molecules push back, so to speak. However, if the
ball is reasonably dense, like a baseball or cannonball, then it does no
harm to ignore air resistance.
In the language of physics, a force is something that imparts
an acceleration, meaning that a force is something that changes your
velocity. If gravity is the only force acting on the ball, then its velocity
is changing in a constant manner. If we think in terms of graphs, then
velocity is really the same thing as slope – both quantities can be seen
as measuring the rate at which you are changing your position with
time. We now ask, “What sort of function has a constant slope?” You
might remember the answer to this question from an old algebra class:
A straight (nonvertical) line. If you are walking up the line, the slope
feels the same to you regardless of where on the line you find yourself.
This is shown in Figure 3.4.
figure 3.4 The only function
with a constant slope is a
straight line. No matter what
two points we use, the slope
always comes out the same, as
illustrated by the dotted lines.


3.2 you need both rigor and intuition 65
We now know that the velocity of the ball’s motion is described
by a straight line. We can relate this to the position of the ball by
noting that, just as the acceleration describes the rate at which your
velocity is changing, the velocity describes the rate at which your
position is changing. In other words, velocity is the slope of position.
We now ask, “What sort of function has a slope described by a straight
line?” This one is harder than the earlier version of this question, so
I will ask you to take my word for it that the answer is a parabola.
In this way, we can conclude that our ball will trace out a
parabola after it leaves our hands, and with some additional hard work
and algebra we can arrive at answers to our questions about the path of
the projectile. Those details would be more tedious than enlightening,
so let us move on.
3.2 you need both rigor and intuition
This section will be a bit technical, and I promise that you can just
skim over the mathematical notation without losing the thread of
the argument. However, since this book is largely about exposing bad
mathematical arguments, I felt it important to provide a small taste
of what real mathematics looks like.
If you pick up a high-level mathematics textbook and open to a
random page, you are likely to find large amounts of incomprehensible
symbolic notation. That portion of the page not given over to notation
will be filled with equally incomprehensible jargon. If you are lucky,
there might also be a diagram or two.
Attempting to read such a book feels much like reading some-
thing in a foreign language, and you can easily feel like you have
no idea at all what is being asserted. You might even wonder why
all of this technical detail is necessary. In Section 3.1, we managed
to communicate some interesting mathematical ideas with a few
pictures and normal language. Why must the textbooks be all but
unreadable?
The reason is that mathematical objects are entirely abstract.
They are not physical objects that can be handled and manipulated.


66 3 parallel tracks
Consequently, they must be given precise definitions before we can
presume to prove anything about them, and all of the jargon and
notation allows a level of precision that is not possible using only
everyday language. Let us see how this plays out with the objects
discussed in Section 3.1.
Informally, a graph was a drawing composed of dots and lines,
like the one shown in Figure 3.2. However, the drawing is really just a
representation of a graph. It is a picture that helps us to visualize the
relationships among whatever it is the vertices and edges represent,
but it is not the graph itself. We need something more precise if we
want to prove theorems about graphs.
I have in front of me a textbook on graph theory written by
mathematician Robin Wilson. It offers the following definition of the
term “graph”:
graph consists of a non-empty finite set V(G) of elements
called vertices and a finite family E(G) of unordered pairs of (not
necessarily distinct) elements of V(G) called edges; the use of the
word ‘family’ permits the existence of multiple edges. We call

Download 0.99 Mb.

Do'stlaringiz bilan baham:
1   ...   20   21   22   23   24   25   26   27   ...   108




Ma'lumotlar bazasi mualliflik huquqi bilan himoyalangan ©fayllar.org 2024
ma'muriyatiga murojaat qiling