12,2,8,…\dfrac{1}{2},2,8, \ldots21,2,8,…start fraction, 1, divided by, 2, end fraction, comma, 2, comma, 8, comma, dots progressiyaning keyingi hadi nechaga teng?
Javobingiz quyidagicha boʻlishi kerak:
6666 kabi butun son
3/53/53/53, slash, 5 kabi soddalashtirilga toʻgʻri kasr
7/47/47/47, slash, 4 kabi soddalashtirilgan notoʻgʻri kasr
1 3/41\ 3/41 3/41, space, 3, slash, 4 kabi aralash son
0.750.750.750, point, 75 kabi aniq oʻnli kasr
12 pi12\ \text{pi}12 pi12, space, start text, p, i, end text yoki 2/3 pi2/3\ \text{pi}2/3 pi2, slash, 3, space, start text, p, i, end text kabi pi ning karralisi
TekshirishIzoh
Shunga oʻxshash masalalarni yechmoqchimisiz? Ushbu mashqni koʻring.
Rekursiv formulani yozish
54,18,6,...54,18,6,...54,18,6,...54, comma, 18, comma, 6, comma, point, point, pointning rekursiv formulasini yozishimiz kerak boʻlsin. Biz bilamizki, progressiya maxraji 13\maroonC{\dfrac{1}{3}}31start color #ed5fa6, start fraction, 1, divided by, 3, end fraction, end color #ed5fa6 ga teng. Bundan tashqari, birinchi had 54\blueD{54}54start color #11accd, 54, end color #11accd ga teng. Demak, quyidagi progressiya uchun rekursiv formula:
{a(1)=54a(n)=a(n−1)⋅13\begin{cases}a(1) = \blueD{54} \\\\ a(n) = a(n-1)\cdot\maroonC{\dfrac{1}{3}} \end{cases}⎩⎪⎪⎪⎨⎪⎪⎪⎧a(1)=54a(n)=a(n−1)⋅31
1-masala
12,2,8,…\dfrac{1}{2},2,8, \ldots21,2,8,…start fraction, 1, divided by, 2, end fraction, comma, 2, comma, 8, comma, dots progressiya uchun rekursiv formuladagi kkkk va rrrr ni toping.
{a(1)=ka(n)=a(n−1)⋅r\begin{cases}a(1) = k \\\\ a(n) = a(n-1)\cdot r \end{cases}⎩⎪⎪⎨⎪⎪⎧a(1)=ka(n)=a(n−1)⋅r
k=k=k=k, equals
Do'stlaringiz bilan baham: |