Upper school program guide


Small Business Management


Download 0.79 Mb.
Pdf ko'rish
bet8/12
Sana03.09.2017
Hajmi0.79 Mb.
#14930
1   ...   4   5   6   7   8   9   10   11   12

 

Small Business Management 

Students immerse themselves fully in the Design Thinking process with a specific focus on 

managing an authentic school business (created prior by the Start-Up class). They engage in 

discovery, interpretation, ideation, experimentation and evolution to find ways to maintain a 

successful business. Students interview the users about the products/services, manage a budget 

and innovate for growth. In this course students work to develop entrepreneurial skills as they 

stock, staff and manage the daily operations of the business. Students are responsible for sales, 

purchasing, receiving, maintaining inventory, merchandising, public relations and supervision of 

any staff. Students also learn stewardship as they select the beneficiaries for profits from the 

business. (Semester, .50 credit) 

 

 

 



 

 


 

60 


 

Mathematics

 

Algebra I Part 2 

This course is designed for students who will benefit from a student center paced approach to the 

fundamental Algebra I course. Students enter this sequence after completing Algebra I Part 1. 

The objectives, methods of instruction, materials, evaluation methods and course content are the 

same as the ones detailed for Algebra I. For each topic more time is allotted for extensive 

practice and review. This course extends students' knowledge and understanding of the real 

number system and its properties through the study of variables, expressions, equations, 

inequalities and analysis of data derived from real world phenomena. Applications using the 

calculator are explored and introduced. (Full year, 1 credit) 



 

Algebra I 

This course is an in depth examination of Algebra I concepts using a functions approach.  Many 

topics from the Pre-Algebra course will be reviewed while examining new topics such as linear 

functions, inequalities, exponents and exponential functions, quadratic equations and functions, 

polynomials and factoring, rational expressions and radicals.  Algebra I extends students’ 

knowledge and understanding of the real number system and its properties through the study of 

variables, expressions, equations, inequalities and analysis of data derived from real-world 

phenomena.  Emphasis is placed on making connections in algebra to arithmetic, geometry and 

statistics. (Full year, 1 credit) 

Integrated Algebra-Physics (New for 2015-2016) 

Through class discussions and experiments, this laboratory-oriented, ninth-grade course explores 

the physical laws of nature and the techniques of science while building on cross-cutting skills in 

Algebra I. Many topics from the Pre-Algebra course will be reviewed while examining new 

topics such as linear functions, inequalities, exponents and exponential functions, quadratic 

equations and functions, polynomials and factoring, rational expressions and radicals. Algebra I 

extends students’ knowledge and understanding of the real number system and its properties 

through the study of variables, expressions, equations, inequalities and analysis of data derived 

from real-world phenomena. Emphasis is placed on making connections in algebra to arithmetic, 

geometry and statistics.  

 

The science course content is identical to Physics but is sequenced in a way that allows it to be 



integrated with Algebra I. This course is designed to help Algebra I students make connections 

between concepts in math and science, to see real-life applications of the material, and to 

experience the content in multiple modes while providing appropriate scaffolding to make the 

material accessible. One major focus of the course is the use of inquiry-based techniques of 

instruction, through which students must think through problems, develop analytical skills, and 

apply their knowledge to familiar and unfamiliar phenomena. This course meets for two class 

blocks in the daily schedule, as it satisfies the full requirements for both math and science. (Full 

year, 2 credits - 1 Mathematics, 1 Science) 

 

 

 

 


 

61 


Geometry 

This course develops the deductive thinking skills necessary for mathematical proofs through the 

study of the postulates and theorems of Euclidean geometry. Logic and analysis, including 

methods of deductive proof, are stressed in this course. Major topics include: relationships in 

geometric figures in a plane and in space, congruence, similarities, properties of triangles and 

polygons, proving parallelograms, right triangle trigonometry, parallel and perpendicular lines, 

planes, circles, area and volume of plane figures and solids and transformations. Algebraic 

methods are reviewed and used throughout the course. (Full year, 1 credit) 

 

Geometry – Online 

This course is identical in content to the Geometry course, with the exception that the 

coursework will be delivered through a variety of means, such as asynchronous lessons, 

interactive videos, guided notes, digital whiteboards and online assessments.  Students 

participate in weekly, synchronous, online, class-connect sessions with live instruction, lesson 

remediation and teacher support. Student assignments are teacher-graded, and assessments are 

computer-scored and teacher-graded. Students take the semester examination on campus with 

students in the Geometry course. Algebra I and departmental approval are prerequisites to this 

course.  (Online/Blended course, Full year, 1 credit) 

 

Geometry Honors 

This course covers all of the concepts studied in Geometry: relationships in geometric figures in 

a plane and in space, congruence, similarities, other properties of triangles and polygons, parallel 

and perpendicular lines, planes, circles, area and volume of plane figures and solids and 

transformations. Students are challenged with more thought-provoking problems and a deeper 

examination of proofs. Creative problem solving and ingenuity are critical skills necessary for 

the course.  Students are required to meet expectations in understanding, mastery and 

independent learning. (Full year, 1 credit) 

 

Algebra II 

This course builds upon fundamental algebraic concepts studied previously, including variables, 

expressions, equations, and graphs. Additional topics include the following: properties of real 

numbers and algebraic expressions, the function concept, linear equations and inequalities as 

well as linear systems in two variables, properties of exponents (including rational exponents), 

properties of radical expressions, polynomial arithmetic, quadratic equations, and complex 

numbers. (Full year, 1 credit

 

Functions and Trigonometry 

This course builds upon the concepts introduced in Algebra II and introduces a number of 

essential topics from Pre-Calculus. The function topics stressed in this course include: function 

attributes such as domain, range, increasing, decreasing, average rate of change, extrema and 

intercepts; a comprehensive study of the different types of functions including linear, quadratic, 

exponential, logarithmic, rational, and polynomial functions; modeling problems using 

regressions of these types of functions; applications of systems of linear equations; combinations 

of functions

;

 and inverse functions. The trigonometric topics stressed in this course include the 



definition of all six trigonometric functions, solving right triangles and right triangle application 

problems, the area of a triangle, basic trigonometric identities, circular trigonometry, the graphs 



 

62 


of sine, cosine, and tangent and applications of trigonometric functions. In addition, students are 

exposed to the basics of statistics. (Full year, 1 credit) 

 

Accelerated Algebra II 

This course builds upon the fundamental concepts of variables, expressions, equations and 

graphs studied in first-year algebra. The properties and applications of numbers, graphs, 

expressions, equations, inequalities and functions are stressed. Applications of mathematics to 

real-world problems, effective reasoning skills and problem-solving strategies are emphasized. 

The following skills and abilities are given high priority: to make connections between the 

mathematical concepts studied and other subject areas; to use mathematical language when 

modeling situations; to effectively and efficiently use a graphing calculator and other applicable 

technology; and to analyze and avoid common errors. (Full year, 1 credit) 

 

Accelerated Algebra II – Online (New for 2015-2016) 

In this course students use their prior knowledge from previous courses to learn and apply 

Algebra II skills. This course includes functions; linear, quadratic, polynomial, radical, rational, 

exponential and logarithmic. Other topics are trigonometry, geometry, conic sections, systems of 

equations, probability, and statistics. Students apply the skills that they learn in this course to real 

world situations.

 Additionally, students learn to effectively and efficiently use a graphing 

calculator and other applicable technology. 

 

 



Coursework is delivered through a variety of means, such as asynchronous lessons, interactive 

videos, guided notes, digital whiteboards, and online assessments. Students participate in weekly, 

synchronous, online sessions with live instruction, lesson remediation, and teacher support. 

Student assignments are teacher-graded, and assessments are computer-scored and teacher-

graded. Students take the semester examination on campus with students in the regular 

Accelerated Algebra II course. Geometry and departmental approval are prerequisites to this 

course. (Online/Blended course, Full year, 1 credit) 

 

 



Algebra II/Trigonometry Honors 

This course builds on the fundamental concepts of variables, equations and graphs studied in 

Algebra 1. The properties and applications of numbers, graphs, tables, expressions, equations, 

inequalities as applied to functions (linear, quadratic, trigonometric, polynomial, rational, 

logarithmic and exponential). In addition, students are also given a thorough grounding in the 

concepts and applications of triangular and circular trigonometry. Applications of mathematics to 

real-world problems, effective reasoning skills and problem-solving strategies are emphasized. 

Students need to be able to make connections between the mathematical concepts studied and 

other subject areas, to use mathematical language when modeling situations, to effectively and 

efficiently use a graphing calculator and other applicable technology, and to analyze and avoid 

common errors. Students are required to meet expectations in understanding, mastery and 

independent learning. (Full year, 1 credit) 

 

 

 

 


 

63 


Pre-Calculus 

This rigorous course builds upon the concepts and skills mastered in previous Algebra classes 

and aims to facilitate a deep understanding of mathematics. This course endeavors to improve 

students’ ability to analyze and solve sophisticated mathematical problems. Students develop 

their quantitative, reasoning, algebraic and graphical skills. This course is designed to prepare 

students for college level work in mathematics, particularly calculus courses, exploring in detail 

the concepts and technical skills necessary for analyzing the behavior of functions and their 

properties. Polynomial, rational, exponential, trigonometric and logarithmic functions are 

discussed from an algebraic, numerical, graphical and application point of view. In addition to 

functions, a number of other stand-alone concepts are also covered. Instruction on more 

advanced and appropriate use of the graphing calculator is also addressed. (Full year, 1 credit) 

 

Pre-Calculus Honors 

This course builds upon concepts introduced in Algebra II-Trig Honors/Accelerated Algebra II, 

and is designed to prepare students for college level work, specifically AP Calculus BC. In 

addition, emphasis is placed on the applications of a graphing calculator, real-world problems, 

and 


proofs of formulas and identities

. The course covers more than Pre-Calculus as extra topics 

will include: 

polar coordinates, parametric equations, sequence and series and then an 

introduction to limits and derivatives and as well as area under the curve. 

Students are expected 

to explore unfamiliar ideas independently. Students are required to meet expectations in 

understanding, mastery and independent learning. (Full year, 1 credit) 

 

Calculus 

This course covers differential and integral calculus, and is primarily concerned with developing 

students’ understanding of the concepts behind calculus and providing experience with its 

methods and applications. Instead of serving as a first-year college course (as the AP course 

does), this course is intended to be an introduction to the subject that will make Calculus I in 

college more familiar to students. The content covers several types of functions, including how 

they can be used in modeling data; the concept of limits and how it applies to derivatives; 

various techniques of differentiation and integration; and ways in which differentiation and 

integration can be applied to real-world problems. For applicable topics, time is spent using 

technology as a time-saving device to evaluate derivatives and as an aid in understanding the 

concepts of calculus graphically. (Full year, 1 credit) 

 

AP Calculus AB 

AP Calculus AB is roughly equivalent to a first semester college calculus course devoted to 

topics in differential and integral calculus. The AP course covers topics in these areas, including 

concepts and skills of limits, derivatives, definite integrals, and the Fundamental Theorem of 

Calculus. The course develops students’ mastery of the concepts of calculus, with an emphasis 

on the connections and interrelationships between graphical, numerical, analytical and verbal 

representations of each problem and topic they encounter. Students primarily use the TI-83 and 

TI-84 graphing calculators to solve problems, experiment, interpret their results and support their 

conclusions. (Full year, 1 credit) 

 

 

 

 


 

64 


AP Calculus BC 

AP Calculus BC is roughly equivalent to both first and second semester college calculus courses 

and extends the content learned in AB to different types of equations and topics. The course 

covers topics in differential and integral calculus, including concepts and skills of limits, 

derivatives, definite integrals, the Fundamental Theorem of Calculus and series. This course 

covers all topics from AP Calculus AB, as well as derivatives of vector and parametrically 

defined functions, polar functions, integration by parts, sequences and series and elementary 

differential equations. The course teaches students to approach calculus concepts and problems 

when they are represented graphically, numerically, analytically and verbally, and to make 

connections among these representations. Students learn how to use technology to help solve 

problems, experiment, interpret results and support conclusions. Precalculus Honors is a 

prerequisite to this course. (Full year, 1 credit) 

 

AP Statistics 

The purpose of this course is to introduce students to the major concepts and tools for collecting, 

analyzing and drawing conclusions from data. Topics are covered under four broad themes: 

Exploring Data (observing patterns and departures from patterns); Sampling and 

Experimentation (deciding what and how to measure); Anticipating Patterns (producing models 

using probability theory and simulation); and Statistical Inference (confirming models). Students 

use technology, investigations, problem solving and writing as they build conceptual 

understanding. The content of this course follows the AP syllabus and is equivalent to a one-

semester, introductory, non-calculus-based college course in statistics. (Full year, 1 credit) 

 

Multivariable Calculus: Post-AP 

This course builds on the concepts of single variable calculus and applies those concepts to 

problems in higher dimensions. The course covers some topics already addressed in the Calculus 

BC syllabus but not in the Calculus AB syllabus, such as parametric equations, polar coordinates 

and sequences/series. Three-dimensional work begins with vectors and the geometry of space. 

Vector functions are followed by the study of partial derivatives, multiple integrals and vector 

calculus. AP Calculus AB or AP Calculus BC is a prerequisite to this course. (Full year, 1 credit) 

 

Linear Algebra: Post-AP 

This course includes matrix algebra, determinants, vector spaces and eigenvalues and 

eigenvectors. The Gram-Schmidt orthogonalization process is covered along with the theory of 

orthogonal sets, including least squares problems. Applications to engineering, computer science, 

mathematics, physics, biology, economics and statistics are included throughout the course. 

Multivariable Calculus is a prerequisite to this course. (Full year, 1 credit) 

 


 

65 


Semester Electives 

 

Cryptography (New for 2015-2016) 

This is an introduction to cryptography, from its historical context to its applications. Students 

learn how fundamental mathematical concepts are the bases of cryptographic algorithms. The 

course incorporates student-friendly, computer-based Maplets throughout that provide practical 

examples of the techniques used. Students learn about the Enigma machine and Navajo code, the 

implementation and cryptanalysis of classical ciphers, such as substitution, transposition, shift, 

affine, Vigenère and Hill. By using the Maplets, students complete complicated tasks with 

relative ease. Students encrypt, decrypt and cryptanalyze messages without the burden of 

understanding programming or computer syntax.  

 

After introducing elementary methods and techniques, the class fully develops the Enigma cipher 



machine and Navajo code used during World War II. Students see mathematics in cryptology 

through monoalphabetic, polyalphabetic and block ciphers. The course includes a focus on 

public-key cryptography, and the textbook describes RSA ciphers, the Diffie–Hellman key 

exchange and ElGamal ciphers. If time allows, students may also explore current U.S. federal 

cryptographic standards, such as the AES, and explore how to authenticate messages via digital 

signatures, hash functions and certificates. Algebra II is a prerequisite to this course. (Semester, 



.50 credit) 

 

Discrete Mathematics 

The course allows students to explore a branch of mathematics that is rich and varied, and does 

not rely as heavily upon the abstractions and algebraic manipulation skills. Discrete Mathematics 

exposes students to contemporary mathematical thinking as it is applied to important and 

relevant problems in economics, social and management sciences, politics and business. It is the 

goal of this course to help students realize that mathematical information abounds in our society 

and to excite them about mathematical thinking, while helping them to think logically and 

critically about that information. The course also aims to develop an appreciation for the 

aesthetic elements of mathematics. (Spring semester, .50 credit) 

 

Financial Mathematics (New for 2015-2016) 

Students investigate financial mathematics as applied to the stock market, modeling for a 

business, banking services and consumer credit, auto and home loans, investment plans for 

retirement and other applications. Developing on the functions learned in Algebra II, students are 

able to apply models to real world financial problems. Using the computer and the TI 83/84 

Finance Applications, students work on problems that they will eventually see after high school. 

Algebra II is a prerequisite to this course. (Semester, .50 credit) 



 

Logic 

(New for 2015-2016)

 

In this semester course, students 

construct and evaluate arguments by connecting to real-life 

scenarios pertinent to their lives. These short scenarios "translate" new notions and terms into 

concepts that they can relate to. Using an internet platform, students complete interactive 

exercises and view videos that reinforce the content to become more logical thinkers and 

communicators. Laws of logic, the history of logic and applied logic are primary focuses. 

Students need to have a strong verbal and written background as a prerequisite since students 



 

66 


translate verbal arguments to symbolic logic. 

Algebra II is a prerequisite to this course. 



(Semester, .50 credit) 

 

Mathematical Modeling 



(New for 2015-2016) 

As the world becomes ever-increasingly interconnected and dependent upon groups 

collaborating to find solutions, Mathematical Modeling is becoming a more important for all 

students. In this fall semester course, students learn how to work in groups and collaborate in a 

mathematical modeling project. Doing several projects over the course of the semester, they 

incorporate many different levels of math and several disciplines, including statistics, physics, 

environmental science, biology, economics, English, finance and history. Working on some 

model problems from HiMCM and the Moody’s Challenge, they prepare for the HiMCM contest 

in the month of November. Juniors and Seniors can also compete in the Moody’s M3 Challenge 

in the spring. Students learn how to research, organize and present their findings in a report. 

They are able to create an executive summary, present their problem solution and discuss 

limitations of the solution. Students must have taken, or must be concurrently enrolled in, 

Algebra II/Trigonometry Honors or Precalculus as a prerequisite to this course. (Fall semester, 

.50 credit) 

 


Download 0.79 Mb.

Do'stlaringiz bilan baham:
1   ...   4   5   6   7   8   9   10   11   12




Ma'lumotlar bazasi mualliflik huquqi bilan himoyalangan ©fayllar.org 2024
ma'muriyatiga murojaat qiling