Vektorlarning chiziqli bog’ligi aftin kordinatalari haqida tushuncha


Download 132.5 Kb.
bet1/5
Sana22.01.2023
Hajmi132.5 Kb.
#1110643
  1   2   3   4   5
Bog'liq
VEKTORLARNING CHIZIQLI BOG’LIGI AFTIN KORDINATALARI HAQIDA TUSHUNCHA


VEKTORLARNING CHIZIQLI BOG’LIGI AFTIN KORDINATALARI HAQIDA TUSHUNCHA

Reja:




  1. Vektorlar sistemasining bazisi va rangi. Kanonik bazis

  2. Bir jinsli chiziqli tenglamalar sistemasining fundamental yechim-lari tizimi.

  3. Chiziqli tenglamalar sistemasi umumiy yechimining vektor shakli



1. Vektorlar sistemasining bazisi va rangi


Vektorlar sistemasining har qanday chiziqli erkli qism osti sistemasini sistemaning bazisigacha to`ldirish mumkin. Berilgan a1, a2, …, am sistemaning bazislaridan birini topish uchun a1x1+a2x2+…+amxm = θ vektor tenglama tuziladi va uning biror-bir ko`rinishdagi umumiy yechimi quriladi. Qurilgan umumiy yechimning bazis noma`lumlari oldidagi mos koeffitsient – vektorlardan iborat sistema uning bazisini tashkil etadi. Har qanday chiziqli bog`liq vektorlar sistemasi umumiy yechim ko`rinishlariga mos holda bir nechta bazisga ega bo`lishi mumkin. Har bir bazisdagi vektorlar soni esa tengligicha qoladi.
Berilgan a1, a2, …, am vektorlar sistemasining ixtiyoriy bazisi tarkibidagi vektorlar soniga uning rangi deyiladi.
Masala. Quyida berilgan vektorlar sistemasining bazislaridan birini quring va rangini aniqlang:
a1(1; -1; 2; 3), a2(-2; -3; 0; 1), a3(-2; -9; 4; 6), a4(-1; 2; -2; -1).
a1x1 a2x2 a3x3 a4x4 θ vektor tenglama umumiy yechimini Gauss-Jordan usulida quramiz.
 … 

x1, x2 va x4 noma`lumlar umumiy yechimning bazis noma`lumlari. Demak, mos ravishda, a1, a2 va a4 vektorlar tizimi berilgan sistemaning bazislaridan birini tashkil etadi. Tizim 3 ta vektordan tarkib topgani uchun berilgan vektorlar sistemasining rangi 3 ga teng.


Agar a1, a2, …, am vektorlar sistemasining rangi r ga teng bo`lsa, u holda sistemaning r ta vektoridan tuzilgan har qanday chiziqli erkli qism osti sistemasi uning bazisi bo`ladi.



Download 132.5 Kb.

Do'stlaringiz bilan baham:
  1   2   3   4   5




Ma'lumotlar bazasi mualliflik huquqi bilan himoyalangan ©fayllar.org 2024
ma'muriyatiga murojaat qiling