PARABOLIK TIPDAGI TENGLANALAR
1-§. Issiqlik o’tkazuvchanlik tenglamasi uchun Koshi masalasi
Issiqliq o’tkazuvchanlik tenglamasi uchun klassik Koshi masalas deb
sinfga tegishli va da
(3.1)
tenglamani , da esa (3.2)
boshlang’ich shartlarni qanoatlantiruvchi funksiyani topishga aytiladi , bu yerda – berilgan funksiyalar.
Agar va berilgan uzluksiz
chegaralangan funksiyalar bo’lsa , u xolda (3.1) , (3.2) Koshi masalasining yechimi mavjud va yagona bo’lib , u
(3.3)
Puasson formulasi orqali ifodalanadi [5] , [7].
1.Agar (3.3) formulada n=1 , bo’lsa , u xolda (3.1) , (3.2) Koshi
masalasining yechimi
ko’rinishida yoziladi . Bu yerda funksiya t >0 da tenglamaning fundamental yechimi deyiladi [15] , [19].
2.Agar (3.3) ) formulada bo’lsa , u xolda (3.1) , (3.2) Koshi
masalasining yechimi
Ko’rinishida yoziladi
1-Misol. tenglama uchun quydagi
shartlarni qanoatlantiruvchi Koshi masalasining yechimini toping.
Yechish. formulaga asosan berilgan masalaning yechimi
(3.4)
ko’rinishida boladi.
O’ng tomonidagi integralni xisoblaymiz:
Bundan
Quydagi
tenglikka va
(3.5)
formulaga ko’ra
(3.6)
Shunday qilib, (3.6) ni (3.4) tenglikka qo’yib , berilgan Koshi masalasining yechimini olamiz:
2-Misol. tenglama uchun quydagi
=2 (3.7)
shartni qanoatlantiruvchi Koshi masalasining yechimini toping.
Yechish. n=1 da (3.3) Puasson formulasiga ko’ra , berilgan tenglama va (3.7) shartdan foydalanib quydagini
(3.8)
xosil qilamiz .
(3.8) ifodaning bo’yicha olingan birinchi va ikkinchi integrallarida
Almashtirish bajarib quydagiga
(3.9)
ega bo’lamiz . Ma’lum bo’lgan (3.5) formulaga asosan (3.9) formuladan
ni xosil qilamiz. Demak , berilgan tenglama uchun qo’yilgan Koshi masalasining yechimi dan iboratdir.
3-Misol. tenglama uchun quydagi
(3.10)
Shartni qanoatlantiruvchi yechimini toping.
Yechish. n=2 da (3.3) Puasson formulasiga ko’ra , berilgan tenglama va (3.7) shartdan foydalanib quydagini
(3.11)
xosil qilamiz.
(3.11) ifodaning birinchi va ikkinchi integralarida
;
Almashtirishlar bajarib qo’ydagiga
(3.12)
ega bo’lamiz. Ma’lum bo’lgan (3.5) va
(3.13)
Formulalarga asosan (3.12) formuladan
Koshi masalasining yechimini xosil qilamiz.
Do'stlaringiz bilan baham: |