0 name: Switch category to $module$/top/╨Я╨╛ ╤Г╨╝╨╛╨╗╤З╨░╨╜╨╕╤О ╨┤╨╗╤п joriy nazorat


Download 114.96 Kb.
bet8/13
Sana20.06.2023
Hajmi114.96 Kb.
#1632357
1   ...   5   6   7   8   9   10   11   12   13
Bog'liq
ixtisoslik

tekis   yaqinlashadi

~
Yaqinlashuvchi

~
Musbat qator

~
Ishorasi almashinuvchi \nqator

}

73129 name: qator haqida nima deyish mumkin?


::qator haqida nima deyish mumkin?::[html]
\\( \\sum_\{n\=0\}^ \\infty \\frac\{x^2\}\{(1+x^2)^n\} \\)
qator   haqida  nima deyish mumkin?
{

=
\\( \\lim_\{x \\rightarrow \\infty\}\\sum_\{n\=0\}^ \\infty u_n(x) \\neq \\sum_\{n\=0\}^ \\infty \\lim_\{x \\rightarrow \\infty\}u_n(x) \\)

~
uzluksiz



~
\\( u_n(x)\= \\frac\{x^2\}\{(1+x^2)^n\} \\)

}


0 name: Switch category to $module$/top/По умолчанию для Funksional qator tushunchasi, aniqlanish va yaqinlashish sohalari.
$CATEGORY: $module$/top/По умолчанию для Funksional qator tushunchasi, aniqlanish va yaqinlashish sohalari.

74906 name: Agar funksional qatorning M to`plamda tekis yaqinlashuvchi bo`lishi uchun ……………………………………tenglikning bajarilishi zarur va yetarli.


::Agar funksional qatorning M to`plamda tekis yaqinlashuvchi bo`lishi uchun ……………………………………tenglikning bajarilishi zarur va yetarli.::[html]
Agar funksional  qatorning  M \nto`plamda  tekis yaqinlashuvchi\nbo`lishi uchun  ……………………………………tenglikning bajarilishi zarur va yetarli.
{

=
\\( \\lim_\{n \\rightarrow \\infty\}\\sup_\{x\\in M\}|r_n(x)|\=0 \\)

~
\\( |\\sum_\{k\=n\}^\{n+p\}u_k(x)|<\\varepsilon \\)

~
\\( |u_n(x)|\\leq a \\)

~
\\( |B_n(x)|\\leq K \\)

}

74905 name: Agar funksional qatorning qismiy yig`indilaridan tuzilgan funksional ketma-ketlik M to`plamda qatorning yig`indisi S ga tekis yaqinlashsa, unda funksional qator M to`plamda …………………………. deyiladi.


::Agar funksional qatorning qismiy yig`indilaridan tuzilgan funksional ketma-ketlik M to`plamda qatorning yig`indisi S ga tekis yaqinlashsa, unda funksional qator M to`plamda …………………………. deyiladi.::[html]

Download 114.96 Kb.

Do'stlaringiz bilan baham:
1   ...   5   6   7   8   9   10   11   12   13




Ma'lumotlar bazasi mualliflik huquqi bilan himoyalangan ©fayllar.org 2024
ma'muriyatiga murojaat qiling