Q.E.D.
Eslatma. Bu teoremada kesmalar o'rniga intervallarni olish mumkin emas.
1
Chunonchi, quyidagi ichma-ich joylashgan intervallar (0,
) ketma-ketligini qaraylik.
n
Bu intervallarning har biri avvalgisi ichiga joylashgan bo'lib, ularning uzunligi nolga
intiladi. Lekin bu intervallarning barchasiga tegishli bo'lgan nuqta mavjud emas. Boshqacha aytganda, bu intervallar barchasining kesishmasi bo'sh to'plamdir.
Ushbu paragrafda biz yaqinlashmaydigan ketma-ketliklarni o'rganamiz. Ko'pgina amaliy masalalarni yechishda aynan shunday ketma-ketliklarni o'rganishga to'g'ri keladi. Ba'zan bu ketma-ketliklar biror songa yaqinlashishi uchun ularni qismlarga ajratish yetarli bo'ladi. Ana shu o'rinda hosil bo'ladigan limitlarga qismiy limitlar deyiladi.
Ketma-ketlik limitga ega bo'lsa, u yaqinlashuvchi deyilar edi. Ravshanki, agar ketma-ketlik yaqinlashsa, u yagona limitga ega. Haqiqatan ham, agar u ikkita a va b limitlarga ega deb faraz qilsak,
xn = a + αn = b + βn
−
ni olamiz. Demak, b a = 0, ya'ni b = a ekan.
Ammo uzoqlashuvchi ketma-ketliklarda qismiy limitlar ko'p bo'lishi mumkin. Qismiy limitga aniq ta'rif berish uchun qismiy ketma-ketlik tushunchasini kiritamiz.
Ixtiyoriy qat'iy o'suvchi { kn} natural sonlar ketma-ketligini tanlaymiz, ya'ni
Do'stlaringiz bilan baham: |