1. Теоретические аспекты использования интерактивных методов обучения в начальной школе


Методика внедрения интерактивных методов обучения на уроках в начальных классах


Download 68.23 Kb.
bet4/7
Sana09.06.2023
Hajmi68.23 Kb.
#1476036
TuriУрок
1   2   3   4   5   6   7
Bog'liq
Документ Microsoft Word (4)

2. Методика внедрения интерактивных методов обучения на уроках в начальных классах




2.1 Применение интерактивных технологий — одно из направлений совершенствования учебно-воспитательного процесса. На примере урока математики




Современному учебно-воспитательному процессу присущи преобладание вербальных методов обучения и воспитания, недооценка значения общения школьников для решения ведущих задач и задач на уроках математики, отсутствие интересных для учащихся форм и методов организации учебной деятельности. Поэтому насущной потребностью современной системы образования является внедрение новых форм и методов обучения и воспитания, обеспечивающих развитие личности каждого школьника.
Решению этой проблемы способствует внедрение интерактивных технологий обучения. Именно они эффективнее, чем другие педагогические технологии, способствующие интеллектуальному, социальному и духовному развитию школьника, готовность жить и работать в гуманном, демократическом обществе.
Интерактивные технологии обучения ориентированы на [22]:
создание условий для осмысления и решения проблем, связанных с защитой своих прав и прав товарища; осознание долга и ответственности перед окружающими, воспитание навыков культуры и социальной этики, которые включают в себя соблюдение моральных принципов и норм в обществе, приоритет общечеловеческих ценностей;
социализацию личности и формирование в процессе воспитания и образования навыков активного нравственного действия;
развитие личности, которая способна критически оценивать события, происходящие в обществе.
Интерактивные технологии обучения на уроках математики способствуют эффективному развитию у каждого человека математических способностей, развития логического мышления, системы общечеловеческих ценностей и общепринятых норм поведения, как на уроках математики, так и в жизни; развития способности ценить знания и умение пользоваться ими; осознанию личной ответственности и умению объединяться с другими членами коллектива класса ради решения общей проблемы, развития способности признавать и уважать ценности другого человека, формированию навыков общения и сотрудничества с другими членами группы, взаимопонимания и взаимоуважения до каждого индивидуума, воспитанию толерантности, сострадания, доброжелательности и заботы, чувство солидарности и равенства, формированию умения делать свободный и независимый выбор, основанный на собственных суждениях и анализе действительности, понимании норм и убирал поведения.
В условиях интерактивного обучения на уроках математики обеспечиваются формирование у его участников, прежде всего таких интеллектуальных умений, как анализ, сравнение, выделение главного, а также критическое мышление и способность принимать ответственные решения.
В результате организации учебной деятельности с применением интерактивных технологий у учащихся на уроках математики развиваются и усложняются психические процессы – восприятие. Память, внимание, воображение и тому подобное, оказываются такие мыслитель ни операции как анализ и синтез, абстракция и обобщение, формируются воля и характер, при использовании разнообразных видов творческой деятельности на уроках у учащихся развиваются математические способности и проявляется интерес к предмету. Большое количество разнообразных и доступных учащимся видов работ, включенных в содержание знаний, где применяются интерактивные технологии, дает пищу для ума, развивает воображение, наблюдательность, расширяет кругозор, знакомит с важными элементами профессиональной деятельности, влияет на формирование устойчивых познавательных интересов, а в будущем – и на выбор рода занятий, связанных с математикой.
Во время активного обучения ученик анализируя творческое задание, определяет необходимые для выполнения операции, последовательность действий, сравнивает и определяет общее и отличное в способах реализации аналогичных задач, обобщает способы его выполнения. На основе таких мыслительных действий развивается интеллектуальная сфера личности. Кроме того, в процессе выполнения учебных действий ученикам приходится делать определенные расчеты.
Они учатся использовать знания из других предметов (то есть осуществляются межпредметные связи); речь школьников обогащается новыми словами, терминами, что, в свою очередь, положительно влияет на умственное развитие личности.
Интерактивное обучение существенно влияет на сознание и чувства личности с целью воспитания компетентного и ответственного ученика который является свободным и одновременно законопослушным, высоконравственным, социально и политически активной личностью, полноправным членом школьного коллектива; формирование у учащихся общественных взглядов, чувств и убеждений, должного поведения, единства слова и дела.
Интерактивные упражнения на уроках математики сориентированы на [15]:
развитие принадлежности мышление школьников, определенной самостоятельности мнений: побуждают учащихся к высказыванию своего мнения, стимулируют выработку творческого отношения к каким-либо выводам, правилам и тому подобное. Некоторые из интерактивных упражнений (например, «Работа в парах», «Работа в группах», «Карусель», «Поиск информации» и другие), направленные на самостоятельное осмысление материала, помогают задуматься («действительно ли это так?»), исследовать факты, проанализировать алгоритм решений, понимать их суть, проверить и себя и своего товарища, найти ошибку;
развитие сопротивления к внушению мыслей, образцов поведения, требований других: побуждают учащихся к отстаиванию собственного мнения, создают ситуацию дискуссии, столкновения мнений. Закрепление упражнений «Анализ ситуации», «Решение проблем», учат детей противостоять давлению большинства, отстаивать свое мнение. Обнаружить ошибку в суждениях, ответах, указать за нее и доказать это побуждает задания, где учитель допускает ошибки. Когда в заданиях имеется определенная проблемная ситуация, то решение их в условиях интерактивных технологий активно стимулирует деятельность мышления, направленная на преодоление противоречия, недоразумений. Через столкновение взглядов ученики постигают суть, причины действий, поступков;
выработка критического отношения к себе, умение видеть свои ошибки и адекватно относиться к ним; способствуют развитию таких умений, как видеть положительное и отрицательное не только в действиях товарищей, а и в собственных; сравнивать себя с другими и тщательно себя оценивать. Эти упражнения способствуют самопознанию личности и на этой основе взаимопонимания учителей и учащихся и пониманию школьниками требований и критических замечаний учителя. А понимание собственных действий является необходимым для формирования дисциплинированному поведению. Благодаря правильному, адекватному осознанию не только положительного, но и отрицательного в собственном поведении, действиях, обучении возникает критическое отношение к себе, что необходимо прежде всего для восприятия других требований;
развитие поисковой направленности мышления, стремлению к нахождению лучших вариантов решения учебных задач: предусматривают упражнения, которые ставят детей в реальную ситуацию поиска. Иногда они предлагают нестандартные выходы из ситуаций, которые мы, взрослые, часто отбрасываем как нереальные, невозможные. Такой категориальный подход к идеям ребенка тормозит в ней желание делиться собственными идеями, подрывает веру в свои возможности. В процессе интерактивных упражнений «Умственный штурм», «Круг идей», «Решение проблем», «Незаконченные предложения» принимаются все мнения детей как реальные, так и вымышленные. Упражнение «Поиск информации» учит школьников самостоятельно работать с дополнительной литературой, дает возможность найти факт, который может отрицать то, что раньше принималось как неоспоримое. Следовательно, это дает возможность для развития умственного скепсиса относительно существующих правил, выводов, мыслей;
интерактивные упражнения направлены на развитие умения находить общие решения с одноклассниками; на повышение интереса школьников к изученному материалу.
«Ролевые игры» способствуют не только развитию умения излагать свои мысли, но и с уважением относиться к мнениям и предложениям других. Атмосфера доброжелательности, поощрения во время обсуждений, поддержка застенчивых детей во время интерактивных упражнений обуславливает умственную и эмоциональную розкомплектованность учащихся, снижает страх перед возможными ошибками, способствует развитию умения аргументировать.
Суть интерактивного обучения на уроках математики заключается еще и в том, что учебный процесс происходит при условии постоянного, активного взаимодействия всех учащихся коллектива. Это пение-обучение, взаимо-обучение (коллективное, группирует, обучение в сотрудничестве), где ученик и учитель являются равноправными, равнозначными субъектами обучения, понимают, что они делают, рефлексируют по поводу др., они знают, умеют и осуществляют.
Организация интерактивного обучения предусматривает моделирование жизненных ситуаций, использование ролевых игр, совместное решение проблемы на основе анализа обстоятельств и соответствующей ситуации. Оно эффективно способствует формированию математических навыков и умений, выработке ценностей, созданию атмосферы сотрудничества, взаимодействия, дает возможность педагогу стать настоящим лидером детского коллектива, но стоит подчеркнуть, что в процессе интерактивного обучения учителю необходимо учитывать возрастные особенности учащихся.
Интерактивное взаимодействие исключает доминирование одного участника учебного процесса над другими, так и одной мысли над другой. Во время интерактивного обучения учащиеся учатся быть демократическими, открыто общаться с другими людьми, критически мыслить, самостоятельно принимать решения.
Стоит остановиться на положительных сторонах кооперативного обучения как одного из ведущих в системе интерактивного обучения, где каждый должен помогать, получать помощь от другого. Каждый принимает участие в кооперативной творчества, то есть каждая группа выполняет часть общего задания, что целесообразно при изучении большого по объему материала. Более одаренные дети помогают менее одаренным. Кооперативное учение положительно влияет на всех школьников — слабых, средних и сильных. Слабые могут воспользоваться поддержкой группы и достичь успеха в освоении учебных программ по математике. Средние также видят значительно более высокие горизонты своих достижений и имеют чувственные переживания от своего уступку. Наиболее сильные учатся работать вместе с другими, чего они не делали раньше, когда были уверены в своей талантливости только для себя, а не для других. Они находят в кооперативной труда большое удовольствие от помощи другим, выполняя педагогическую функцию обучать менее подготовленных.
Кооперативное учение призвано развивать толерантное поведение среди учащихся. Такое учение уничтожает недоверие. Учащиеся испытывают в конкретных проявлениях коллективизма свое личное участие и свою персональную значимость; все испытывают комфорт от потребности общения с другими. Все ощущают собственную значимость и эксклюзивную стоимость. Редко уменьшается одиночество, повышается мотивация, улучшаются личные достижения.
Ситуации коллективного обучения дают школьнику возможность сотрудничать в различных группах. Каждый школьник своеобразно переживает когнитивную ситуацию, а вместе с тем психологическую и социальную, постоянно находясь в состоянии изменения между личностных связей, опыта познания и оценок, действий и надежд. Среди интерактивных технологий кооперативного обучения можно выделить такие интерактивные упражнения: «Карусель», «Синтез мыслей», «Диалог», «Совместный проект», «Поиск информации», «Круг идей».
По моему мнению, в условиях интерактивного обучения ученик может учиться делать осознанный выбор среди широкого спектра альтернатив и брать на себя ответственность принимать самостоятельные решения, относительно решения задач и упражнений. Важно, что каждый может это делать сознательно и грамотно. В результате применения интерактивных технологий создаются благоприятные возможности и для духовного развития личности, а также эффективному процессу социализации.
Следует отметить, что интерактивное обучение позволяет резко увеличить процесс усвоения материала, поскольку влияет не только на сознание ученика, но и на его чувства, волю (действия, практику). Результаты этих исследований можно отразить в схеме, получившей название «Пирамида обучения».
Лекция – 5 % усвоения
Чтение – 10 % усвоения
Видео-, аудио-материалы – 20 % усвоения
Демонстрация – 30 % усвоения
Дискуссионные группы – 50 % усвоения
Практика через действие – 75 % усвоения
Обучение других применение полученных знаний сразу же – 90 % усвоения.
Пирамиды видно, что наименьших результатов можно достичь при условиях пассивного обучения (лекция – 5 %, чтение – 10 %), а наиболее интерактивного (дискуссионные группы – 50 %, практика через действие – 75 %, обучение других или немедленное применение – 90 %), поэтому можно сформулировать кредо интерактивного обучения:
То, что я слышу, я забываю.
То, что я вижу и слышу, я немного помню.
То, что я слышу, вижу и обсуждаю, я начинаю понимать.
Когда я слышу, вижу, обсуждаю и делаю-я приобретаю знаний и навыков.
Когда я передаю знания другим, я становлюсь мастером.
Гораздо важнее научить, чем просто рассказать.
Процесс обучения на уроках математики – это не автоматическое вкладывание учебного материала в голову ученика. Он требует напряженной умственной работы ребенка, его собственной активности участия в этом процессе. Объяснение и демонстрация, сами по себе, никогда не дадут настоящих, устойчивых знаний. Этого можно достичь только с помощью активного и интерактивного обучения на уроках математики. Мастерство учителя помогает детям достичь лучших результатов теми средствами, которые самые оптимальные в каждой отдельной ситуации. Учитель не имеет права игнорировать коллективную игровую деятельность учащихся потому, что это может привести к недоверию как между учениками, так и между учениками и учителем. Совместная деятельность в организации и проведении игр способствует сплочению коллектива и формированию общей цели. Игровые технологии интерактивного обучения (ситуативное моделирование), которые интересом, эмоциональностью лишают ребенка чувства общественного отчуждения, способствуют социальному развитию ребенка. Таким образом дети учатся работать в команде.
Для того, чтобы ученик хорошо учился, он должен быть постоянно включен в процесс обучения. Путем общения с учениками, учитель он должен говорить на уроке не один и не два раза, а постоянно общаться.
Уроки математики, организованные за интерактивными технологиями, способствуют развитию мышления учащихся, умение выслушать товарища и сделать свои выводы, учиться повадки мнение другого и уметь аргументировать свое мнение. Поэтому, нам своих уроках математики активно применяю групповую учебную деятельность – модель организации обучения в малых группах, объединенных общей учебной целью. Чаще всего парную и групповую работу я провожу на этапе применения полученных знаний. Поэтому, класс разделяю н группы с разными учебными возможностями, и каждая из этих групп требует особого, индивидуального подхода. Труднее всего работать со слабыми учениками, они требуют очень много внимания на уроке, и вот встает вопрос, как организовать работу с этими учениками. Чтобы не оставлять без внимания другие группы детей.
Малые группы использую только в тех случаях, когда задача требует совместной, а не индивидуальной работы.
Особенность выполнения упражнений по интерактивными технологиями заключается в том. что любое упражнение или задание состоит из трех элементов:
инструкция;
действие;
рефлексия (осмысление), то есть сначала идет объяснение, как работы, далее ученики выполняют задание, а в процессе рефлексии объясняют, почему именно такой вариант или способ, действие избрали.
В каждой группе распределены роли, которые они должны выполнять во время групповой работы.
Спикер, председательствующий (руководитель группы):
• зачитывает задание группе;
• организует порядок выполнения;
• предлагает участникам группы высказаться по очереди;
• поощряет группу к работе;
• определяет докладчика.
Секретарь:
• ведет записи результатов работы группы;
• записи ведет коротко и разборчиво;
• как член группы должен быть готов высказать мнение группы при подведении итогов или помочь докладчику.
Посредник:
• следит за временем;
• поощряет группу к работе.
Докладчик:
• четко выражает мнение группы;
• докладывает о результатах работы группы.
Важным моментом групповой работы является проработка содержания и представления группами результатов коллективной деятельности. В зависимости от содержания и цели обучения возможности различные варианты организации работы группы.
Интерактивную технологию, такую как «Поиск информации», использую для того, чтобы оживить сухой, иногда неинтересный материал. Для групп разработаны вопросы, ответы на которые можно найти в различных источниках информации – это раздаточный материал, учебник, справочные издания. Ученики объединяются в группы. каждый получает вопрос по теме урока. Определяется время на поиск и анализ информации. В конце урока заслушиваются сообщения от каждой группы, которые затем повторяются и расширяются всем классом. К этой группе необходимо поместить интерактивные технологии, предусматривающие одновременную общую (фронтальную) работу всего класса, обсуждение проблемы в общем кругу, привлечения внимания учащихся к сложным или проблемным вопросам в учебном материале, мотивация познавательной деятельности, актуализация опорных знаний, поэтому разновидностью на вопрос или высказывая свою мысль или позицию. Вместе с технологией «Микрофон» использую прием «Незаконченные предложения», формулирую незаконченное предложение из правила и предлагаю ученикам выражаясь, закончить его.
Развития поисковой направленности мышления, стремлению к нахождению лучших вариантов решения задач очень целесообразно использовать известную интерактивную технологию коллективного обсуждения «Мозговой штурм». Эта технология побуждает учащихся проявлять воображение и творчество, дает возможность им свободно выражать свои мысли. Цель «Мозгового штурма» в том, чтобы собрать как можно больше идей по проблеме от всех учащихся в течение ограниченного периода времени.
Во время работы над задачами можно использовать технологию «Пресс». Эта технология учит детей выражать свое мнение, выслушать мнение одноклассника, учит вести дискуссию.
Например: В саду росло 7 яблонь и 9 груш. На сколько больше росло груш, чем яблонь?
1-й ученик. Я считаю, что эта задача решается действием вычитания: 9 - 7 = 2.
2-й ученик. Мы вычитаем, так как в задаче спрашивается «На сколько больше груш, чем яблонь? », а этот вопрос сравнения.
3-й ученик. Мы вычитаем, потому что нужно сравнить два числа 9 и 7.
4-й ученик. А чтобы сравнить, надо отнять. 9> 7 на 2, а 7 <9 на 2.
5-й ученик. Итак, если в вопросе к задаче сказано «На сколько больше?» или «На сколько меньше?» надо выполнить вычитание.
Дидактическая игра - метод имитации принятия решений в различных ситуациях путем игры по правилам, уже произведенные участниками. В учеников младших классов, как и у дошкольников, преобладают игровые интересы, произвольное поведение, наглядно-образный характер мышления, практическое отношение к решению задач (направленность внимания на результат, а не на способ действия).
Учитывая эти особенности младших школьников, игра должна сопровождать обучения. Это тот фактор, который способствует социализации учащихся в учебно-воспитательный процесс, развивает память, внимание, находчивость, сохраняет детскую непосредственность, воспитывает взаимное. Именно играя, ребенок приобретает практический опыт работы, выполняет определенные роли, проявляет себя как индивидуальность. Задачи, в которых связаны и умственная, и физическая активность, способствуют воспитанию гармоничной личности. Ведь игра - это не просто развлечение, это фантазия, что развивает ум и смекалку. По сравнению с другими формами обучения и воспитания преимущество игры заключается в том, что она достигает своей цели незаметно для воспитанника, то есть не требует никаких способов насилия над личностью ребенка.
Чтобы игровая деятельность на уроке проходила эффективно и давала желаемые результаты, необходимо ею управлять, обеспечив выполнение такие условия:
1. Готовность учеников к участию в игре. (Каждый ученик должен усвоить правила игры, четко осознавать цель ее, конечный результат, последовательность действий, иметь необходимый запас знаний для участия в игре).
2. Обеспечение каждого ученика необходимым дидактическим материалом.
3. Четкая постановка задачи игры. Объяснение игры - понятное, четкое.
4. сложную игру следует проводить поэтапно, пока ученики не усвоили отдельных действий, а дальше можно предлагать всю игру и различные ее варианты.
5. Действия учеников следует контролировать, своевременно исправлять, направлять, оценивать.
6. Нельзя допускать унижения достоинства ребенка (оскорбительные сравнения, оценка за поражение в игре, насмешки и т.п.).
Игры важно проводить систематически и целенаправленно на каждом уроке, начиная с элементарных игровых ситуаций, постепенно усложняя их по мере накопления у учащихся знаний, формирование умений и навыков, усвоение правил игры, развитию памяти, воспитание сообразительности, самостоятельности, настойчивости.
На своих уроках можно применять кратковременные игровые ситуации различной продолжительности или весь урок строить в виде сюжетно-ролевой игры.
Предпочтение стоит отдавать тем играм, которые предусматривают участие большинства детей класса, быстрый ответ, критическое мышление, развитие коммуникативных способностей.
На уроках математики используются такие игры: «Рыбаки», «Математическое домино», «Поймай бабочку», «Лучший летчик», «Определи маршрут», «День-ночь».
1. «День-ночь» - эту игру используют для закрепления приемов добавления и вычитание (умножение, деление).
2. Игры «Домино», «Математическая эстафета» используются при счете, усвоение действий сложения и вычитания, умножения и деления.
Игру «Математическая эстафета» целесообразно проводить для оживления деятельности учащихся, снятия усталости. Она воспитывает у учащихся чувства долга перед товарищами, внимание, умение сосредоточиться, работать напряженно, в темпе и вместе с тем способствует самоконтролю, позволяет проверить каждый свой шаг, чтобы не подвести свой ряд.
3. «Рыбаки», «Поймай бабочку» - эти игры применяют как элемент урока закреплении приемов сложения и вычитания в пределах 10.
4. «Лучший летчик» - закрепление приемов сложения и вычитания в пределах 10, 20 или при закреплении табличных случаев умножения, деления
5. Игра «Определи маршрут» учит составлять примеры по ответам, повторяем порядок цифр при счете.
Таким образом, дидактические игры позволяют не только формировать навыки устного счета, но и осуществлять социализацию учащихся, знакомить школьников с различными профессиями, воспитывать уважение к труду, к людям разных профессий, относиться к любой работе ответственно.
В 1-м классе с целью усвоения частей задачи можно провести ролевую игру «Мы - задача».
После ознакомления с условием задачи группы учащихся получают на карточках роли: условие задачи, вопрос к задаче, решение задачи, ответ задачи - обсуждают данную роль в группе, и докладчики разыгрывают задачу по ролям перед классом.
К примеру:
1-й ученик: «Я - условие. На дереве сидело 2 птички. К ним прилетели еще 4 птички»
2-й ученик: «Я - вопрос. Сколько птичек стало на дереве? »
3-й ученик: «Я - решение. 2 + 4 = 6 (пт.) »
4-й ученик: «Я - ответ. 6 птиц стало на дереве»
С удовольствием первоклассники выполняют игру «Пантомима», когда при повторении условия задачи, дети одновременно выполняют движения руками, помогая себе в решении задачи.
К примеру:
Две белочки собрали 10 орешков. Первая белочка собрала 6 орешков. Сколько орешков собрала вторая белочка?
Дети (хором): «Две белочки собрали 10 орешков.» (Руки согнуты в локтях, сжатые в кулачки, кулачки прижаты друг к другу).
Дети (хором): «Первая белочка собрала 6 орешков.» (Левая рука прячется за спину) Ребята (хором): «Сколько орешков собрала вторая белочка?» (Правой рукой дети делают короткие движения к себе).
Для повышения скорости устного счета четвероклассников знакомят с способами быстрого счета. Своеобразная эстетика рациональных вычислений возбуждает положительные эмоции, способствует формированию познавательных интересов учащихся.
Способ округления. Этот способ основан на изменении суммы или разницы в зависимости от изменения компонентов и применяется в случае, когда хотя бы один из компонентов представляет собой число, близкое к круглым десятков, сотен, тысяч.
1. Если одно из слагаемых, округляя, увеличить на несколько единиц, то от полученной суммы надо вычесть столько же единиц. К примеру:
354 + 292 = 354 + (292 + 8) - 8 = 354 + 300 - 8 = 646.
2. Если одно из слагаемых увеличим на несколько единиц, а второй уменьшим на столько же единиц, сумма не изменится. На основании этого выполняется округления одного слагаемого за счет другого. К примеру:
998 + 237 = 1000 + 235 = 1235.
3. Если вычитаемое при округлении увеличим на несколько единиц, то, чтобы разница не изменилась, надо и уменьшающееся увеличить на столько же единиц.
К примеру:
2594 - 996 = 2598 - 1000 = 1598.
4. Если уменьшаемое при округлении уменьшим на несколько единиц, то в полученной разности прибавить столько же единиц. К примеру:
1015 - 864 = 1000 - 864 + 15 = 136 + 15 = 151.
Использование свойств сложения и вычитания.
279 + 583 + 721 = (279 + 721) + 583 = 1583;
352 + 109 - 52 = (352 - 52) + 109 = 409;
573 - 432 - 68 = 573 - (432 + 68) = 73.
Умножение на 9, 99, 999. Чтобы умножить на число, написанное девятками, надо к первому множителя приписать дело столько нулей, сколько девяток в
2 множителю, и от результата вычесть 1 множитель. К примеру:
27 × 9 = 270 - 27 = 243;
27 × 99 = 2700 - 27 = 2673;
27 × 999 = 27000 - 27 = 26973.
Умножение двузначного числа на 11. Чтобы умножить двузначное число, сумма цифр которого меньше 10 на 11, надо между цифрами числа написать сумму его цифр. Например: 36 × 11 = 396.
Чтобы умножить на 11 двузначное число, сумма цифр которого больше или равна 10, надо между цифрой десятков, увеличенной на 1, и цифрой единиц написать избыток суммы цифр числа над 10 Например: 82 × 11 = 902.
Умножения на 5. Чтобы умножить число на 5, достаточно разделить его на 2 и результат умножить на 10. Например: 248 × 5 = 1240, так как 248: 2 = 124.
Деления на 5. Чтобы разделить число на 5, достаточно умножить его на 2 и разделить на 10. Например: 235: 5 = 47, поскольку 235 × 2 = 470.
В процессе дидактической игры у детей вырабатывается привычка сосредотачиваться, работать вдумчиво, развивается внимание, память. удовлетворяя свою потребность в деятельности, в процессе игры ребенок «достраивает» в воображении все, что недоступное ей в окружающий деятельности, в восторге не замечает, что учится - познает новое, запоминает, ориентируется в различных ситуациях, углубляет приобретенный ранее опыт, сравнивает запас представлений, понятий, развивает фантазию.
В игре полно проявляются индивидуальные особенности, интеллектуальные возможности, склонности, способности, коммуникативные умения детей.
Дидактическая игра как метод интерактивного обучения организует, развивает учащихся, расширяет их познавательные возможности, воспитывает личность.
Важным этапом интерактивного занятия считаю подведения итогов (Рефлексию) урока. Именно на этом этапе оказывается содержание обработанного материала; подводится черта под знаниями, которые должны быть усвоены, и устанавливается связь между тем, что уже известно, и тем, что понадобится ученикам в будущем. Обязательно с детьми коротко повторяем содержание разработанного; сравниваем реальные результаты с ожидаемыми; анализируем, почему так произошло; устанавливаем связь между новыми знаниями и ранее приобретенными.
Использую различные приемы оценивания: тест, экспресс-опрос, контрольное упражнение, творческое задание, наблюдения, самооценка, игровые методы. Но важно заранее сообщать ученикам ожидаемые результаты, показатели (критерии) оценки, цель.
Таким образом, использование интерактивных технологий на уроках математики дает возможность обогащать мировоззренческую и нравственную основу суждений как отдельной особенности, так и общественного мнения ученического коллектива. С помощью подобных интерактивных упражнений можно глубже осмысливать актуальные явления общественной, культурной, международной жизни, научиться уважать собственное мнение, понять, что не всегда то, что выражает большинство, является истиной.
И в целом, интерактивное обучение является одной из наиболее гибких форм включения каждого ученика в работу, обеспечивает переход от простых до сложных задач, учит использовать не готовые знания, а добывать их из собственного опыта, что ведет к развитию мышления – творческого и диалектического. Новейшие подходы к организации обучения делают учебно-воспитательный процесс разнообразным, интересным и эффективным, а самым полезным в таком обучении является то, что математика начинает нравиться.


Download 68.23 Kb.

Do'stlaringiz bilan baham:
1   2   3   4   5   6   7




Ma'lumotlar bazasi mualliflik huquqi bilan himoyalangan ©fayllar.org 2024
ma'muriyatiga murojaat qiling