1. Triganometrik funksiyalarni integrallash
Aniq integral taʼrifi(Riman yigʻindilari)
Download 369.84 Kb. Pdf ko'rish
|
Hisob Mustaqil ish -3
Aniq integral taʼrifi(Riman yigʻindilari)
Aniq integral va uning xossalari. Aniq integralni hisoblash usullari kesmada f(x) funksiya aniqlanganbo’lsin. kesmani nu qtalar bilan n ta bo’lakka ajratamiz. Har bir kesmadan ixtiyoriy nuqta olib yig’indini tuzamiz. Bunda ko’rinishidagi yig’indi integral yig’indi deyiladi. Uning max dagi limiti mavjud va chekli bo’lsa, unga f(x) funksiyaning a dan b gacha aniq integrali deyiladi va u ko’rinishida yoziladi. Bu holda f(x) funksiya kesmada integrallanuvchi deyiladi. f(x) funksiyaning integrallanuvchi bo’lishi uchun u kesmada uzluksiz bo’lishi yoki chekli sondagi uzilishlarga ega bo’lishi kifoyadir. Aniq integral quyidagi bir qator xossalarga ega: 1. ; . , agar bo’lsa; ; . Agar kesmada va integrallanuvchi bo’lsa, u holda tengsizlik o’rinli bo’ladi; 6. Agar kesmada va funksiyalar integra llanuvchi hamda bo’lsa, u holda ularning aniq integrallari uchun tengsizlik o’rinli bo’ladi. Agar va f(x) funksiya kesmalarda integrallanuvchi bo’lsa, unda kesmada ham integrallanuvchi va tenglik o’rinli bo’ladi. Agar kesmada (a tengsizlik o’rinli bo’ladi; Agar funksiya kesmada integrallanuvchi bo’lsa, u holda f(x) funksiya ham bu kesmada integrallanuvchi va quyidagi tengsizlik o’rinli bo’ladi: 10. Agar f(x) funksiya kesmada uzluksiz bo’lsa, u holda bu kesmada shunday 𝜉 nuqta mavjud bo’ladiki, unda tenglik o’rinli bo’ladi. Agar F(x) uzluksiz f(x) funksiyaning biror boshlang’ich funksiyasi bo’lsa, u holda tenglik o’rinli bo’ladi. Bu tenglik aniq integralni hisoblashning Nyuton-Leybnis formulasi deyiladi. , Ba’zi aniq integrallarni hisoblashda bo’laklab integrallash formulasi deb ataluvchi formuladan foydalaniladi. Berilgan uzluksiz funkisiyadan kesma bo’yicha olingan aniq integiralni ba’zi hollarda biror differensiallanuvchi funksiya orqali “eski” x o’zgaruvchidan “yangi” t o’zgaruchiga o’tish usulida foydalanib hisoblash mumkin bo’ladi. Bunda quyidagi shartlar qo’yiladi: 1. ( 2. (t) va funksiyalar t[ ] kesmada uzluksiz: 3. [ murakkab funksiya [ kesmada aniqlangan va uzluksiz. Bu shartlarda ushbu formula o’rinli bo’ladi: Bu formula aniq integralda o’zgaruvchini almashtirish formulasi deyiladi |
Ma'lumotlar bazasi mualliflik huquqi bilan himoyalangan ©fayllar.org 2024
ma'muriyatiga murojaat qiling
ma'muriyatiga murojaat qiling