13 mavzu Bernulli formulasi Nazariy ma’lumotlar
Download 298.53 Kb. Pdf ko'rish
|
13 - mavzu - Bernulli formulasi
Namunaviy masalalar
88. Standart detalni tayyorlash ehtimoli 0,95 ga teng. Tasodifan tanlangan 5 ta detaldan 3 ta detalning standart bo‘lish ehtimolini toping? Yechish. n=5, k=3. Bernulli formulasiga ko‘ra P 5 (3)=C 3 5 p 3 q 5-3 = 5!/3!*2! (0,95) 3*(0,05)2=0,0214. 89. 4 ta mergan bir-biriga bog‘liq bo‘lmasdan bittadan nishonga o‘q otadi. Birinchisning nishonga tekkizish ehtimoli 0,8; ikkinchisiniki-0,7; uchinchisiniki –0,6; to‘rtinchisiniki – 0,5. 2 tadan ko‘p bo‘lmagan nishonga tekkizish ehtimollarini toping. Yechish. B – 2 tadan ko‘p bo‘lmagan nishonga tekkizish, A0 – bitta ham nishonga tekkizmaslik, A1 – bitta nishonga tekkizish, A2- 2 ta nishonga tekkizish hodislari bo‘lsin. U holda B=A0+A1+A2(A0 , A1, A2 –juft-juft birgalikda bo‘lmagan hodisalar ). Ehtimollarni qo‘shish qoidasiga ko’ra P(B)=P(A 0 )+P(A 1 )+P(A 2 ) bo‘ladi. Bernulli teoremasiga ko‘ra n=4, P(A0)=P 4 (0), P(A 1 )=P 4 (1), P(A 2 )=P 4 (2) va bunda masala shartiga ko‘ra p 1 =0,8; q 1 =0,2 p 2 =0,7; q 2 =0,3 p 3 =0,6; q 3 =0,4 p 4 =0,5 q 4 =0,5. Shuning uchun P 4 (0)=0,012; P 4 (1)=0,106; P 4 (2)=0,32; P(B)=0,012+0,106+0,32=0,438. 90. Tangani 10 marta tashlanganda gerb tomonning ikki marta tushishehtimoli nimaga teng? Yechish. Bernulli teoremasiga ko‘ra bizda n=10, k=2, p=1/2, q=1/2. Shuning uchun P(2)=C 2 10 (1/2) 2 *(1/2) 8 =45/1024=0,04395. 91. Firma ishlab chiqarayotgan buyumlarning 96% i standartga javob beradi. Nazoratning soddalashgan sxemasida standart buyum 0,98 ehtimol bilan va nostandart buyum esa 0,05 ehtimol bilan qabul qilinadi. O‘tkazilgan nazoratda tasodifan tanlangan buyumning standartga javob berish ehtimolini toping. Anazoratdan o‘tgan buyum bo‘lish hodisasi, N1- standart, N2- nostandart buyum bo‘lishi hodisasi. Yechish. 96%-standart bo‘lgani uchun P(A/N1)=0,98 P(A/N2)=0,05 P(N1)=0,96 P(N2)=0,04 P(A)=0,98*0,96+0,05*0,04=0,9428. 92. Nazorat ishi 5 ta savoldan iborat bo‘lib, ularning har biriga 4 ta variant javob berilgan. Ularning bittasi to‘g‘ri, qolganlari noto‘g‘ri. Hech bir savolni bilmaydigan o‘quvchi: a) 3 ta to‘g‘ri javob ; b) 4 ta dan kam bo‘lmagan to‘g‘ri javobni bermaslik ehtimolini toping. Yechish. Masala shartiga ko‘ra p=0,25, n=5, q=0,75. Shuning uchun Bernulli teoremasiga ko‘ra a) k=3, P5(3)=C53(0,25)3(0,75) 2=0,0878; b) k=0, P5(0)=C50(0,25)0(0,75) 5=0,2373 P=1-0,2373=0,77 93. Tajriba 3 ta o‘yin kubigini tashlashdan iborat. 5 ta bog‘liq bo‘lmagan tajribada roppa –rosa 2 marta 3 ta bir tushish ehtimolini toping. Yechish. Bernulli teoremasga ko‘ra n=5, k=2. Shuning uchun P=(1/6) 3 = 0,005, q=0,995. P 5 (2)=10*(0,005) 2 (0,995) 3 = 0,00025. Download 298.53 Kb. Do'stlaringiz bilan baham: |
Ma'lumotlar bazasi mualliflik huquqi bilan himoyalangan ©fayllar.org 2024
ma'muriyatiga murojaat qiling
ma'muriyatiga murojaat qiling