60-odd years of moscow mathematical


Download 1.08 Mb.
Pdf ko'rish
bet16/153
Sana03.10.2023
Hajmi1.08 Mb.
#1690973
1   ...   12   13   14   15   16   17   18   19   ...   153
Bog'liq
Moscow olympiad problems

rotation). Indeed,
u
0
v
0
uu
1
· vv
1
uv · u
1
v
1
= 1.
Then, it is easy to verify that the hyperbolic rotations ϕ map the points of the lattice into points of the lattice.
Indeed, since M
1
is a point of the lattice, it follows that
u
1
x
1
y
1

m,
v
1
x
1
− y
1

m,
where x
1
y
1
are integers. Further on, if
(u, v) =
¡
y

m, x − y

m
¢
is one more point of the lattice, and xare integers, then
u
0
uu
1
=
¡
y

m
¢ ¡
x
1
y
1

m
¢
= (xx
1
yy
1
m) + (xy
1
x
1
y)

Y

m;
v
0
vv
1
= (x − y

m)(x
1
− y
1

m) = (xx
1
yy
1
m− (xy
1
x
1
y)

X − Y

m,
i.e., point M
0
ϕ() withcoordinates (u
0
, v
0
) also belongs to the lattice.
The hyperbolic rotation ϕ transforms M
0
(11) into M
1
(u
1
, v
1
) and M
1
into M
2
ϕ(M
1
), a new point
of the lattice belonging to the hyperbola. The same rotation transforms M
2
into M
3
ϕ(M
2
) that also
belongs to the hyperbola, etc.


INDEFINITE SECOND-ORDER EQUATIONS
21
The inverse rotation ϕ
1
that transforms (u, v) to point (u
0
=
u
u
1
v
0
=
v
v
1
) sends M
0
into M
1
=
ϕ
1
(M
0
); M
2
ϕ
1
(M
1
) , and so on. We get an infinite set of points of the lattice
. . . , M
2
, M
1
, M
0
, M
1
, M
2
, . . .
which belong to the hyperbola and turn into each other under the hyperbolic rotation ϕ.
Thus, it suffices to find on the hyperbola at least one point M
1
different from M
0
and M
0
0
.
In order to do this let us move the segment connecting points (11) and (1, −1) to the right along the
u-axis until it meets a point N
0
of the lattice. If (u
0
, v
0
) are the coordinates of N
0
, then |u
0
| < 1 and the
rectangle G
0
with vertices at points (±u
0
, ±v
0
) contains only three points of the lattice: the origin O, the
point N
0
and the point symmetric to N
0
with respect to O.
Now, let us move the right edge of the rectangle along the u-axis until we encounter a new point
N
00
(u
00
, v
00
) of the lattice. Then we may again move the right edge of the rectangle G
00
, now with vertices at
points (±u
00
, ±v
00
), along the u-axis, etc. (see Fig. L7).
An elegant argument ascending to Herman Minkowski enables us to establish that the sequence of areas
of the rectangles G
0
G
00
. . . (all these areas are integers) is bounded.
Therefore, among them, there are infinitely many rectangles with the same area. Hence, we can deduce
that among the N
0
N
00
. . . there exist two points such that a hyperbolic rotation ψ sending one of them
into another maps the lattice into itself. Therefore, ψ transforms M
0
into a different point of the lattice that
belongs to the hyperbola uv = 1.


22


MOSCOW MATHEMATICAL OLYMPIADS 1 – 59
Olympiad 1 (1935)
Tour 1.1
Set 1.1.A
1.1.A.1. Find the ratio of two numbers if the ratio of their arithmetic mean to their geometric mean is
25 : 24.
1.1.A.2. Given the lengths of two sides of a triangle and that of the bisector of the angle between these
sides, construct the triangle.
1.1.A.3. The base of a pyramid is an isosceles triangle with the vertex angle α. The pyramid’s lateral
edges are at angle ϕ to the base. Find the dihedral angle θ at the edge connecting the pyramid’s vertex to
that of angle α.
Set 1.1.B
1.1.B.1. A train passes an observer in t
1
sec. At the same speed the train crosses a bridge m long. It
takes the train t
2
sec to cross the bridge from the moment the locomotive drives onto the bridge until the
last car leaves it. Find the length and speed of the train.
1.1.B.2. Given three parallel straight lines. Construct a square three of whose vertices belong to these
lines.
1.1.B.3. The base of a right pyramid is a quadrilateral whose sides are each of length a. The planar
angles at the vertex of the pyramid are equal to the angles between the lateral edges and the base. Find the
volume of the pyramid.
Set 1.1.C
1.1.C.1. Find four consecutive terms abcof an arithmetic progression and four consecutive terms
a
1
b
1
c
1
d
1
of a geometric progression such that a
1
= 27, b
1
= 27, c
1
= 39, and d
1
= 87.
1.1.C.2. Prove that if the lengths of the sides of a triangle form an arithmetic progression, then the
radius of the inscribed circle is one third of one of the heights of the triangle.
1.1.C.3. The height of a truncated cone is equal to the radius of its base. The perimeter of a regular
hexagon circumscribing its top is equal to the perimeter of an equilateral triangle inscribed in its base. Find
the angle ϕ between the cone’s generating line and its base.

Download 1.08 Mb.

Do'stlaringiz bilan baham:
1   ...   12   13   14   15   16   17   18   19   ...   153




Ma'lumotlar bazasi mualliflik huquqi bilan himoyalangan ©fayllar.org 2024
ma'muriyatiga murojaat qiling