Alisher navoiy nomidagi samarqand davlat universiteti hisoblash usullari kafedrasi
Lagranj interpolyasion kupxadini kursating
Download 5.01 Kb. Pdf ko'rish
|
9. Lagranj interpolyasion kupxadini kursating: j i i j j j n j n x x x x x f x ) ( 0 j i i j j j n j n x x x x x f x ) ( 1 j i i i j j n j n x x x x x f x ) ( 1 j i i j j j n j n x x x x x f x ) ( 1 10. A matrisaning xos kupxadini kursating: n n n n P P P P ... 2 2 1 1 n n P P P P ... 2 2 1 n n P P P P ... 3 3 2 2 1 280 n n P P P P ... 3 3 2 2 1 11. Nyutonning 2-chi interpolyasion formulasini kursating: P n (x) = Y n + q ΔY n-1 + ! 2 ) 1 ( q q Δ 2 2 n y + P n (x) = Y n + (q-1) ΔY n + ! 2 ) 1 ( q q Δ 2 Y n-1 + … P n (x) = Y n-1 + q ΔY n + ! 2 ) 1 ( q q Δ 2 Y n-1 + … P n (x) = Y n + q ΔY n + ! 2 ) 1 ( q q Δ Y n-1 + … 12. Agar 0 ) ( x f tenglamani grafigini chizish kiyin bulsa, u vaktda tenglamani kaysi formada yozish mumkin : 0 1 2 ) 1 2 ( ) ( x x x f x x 2 1 2 1 2 2 2 x x x x x x 2 1 2 x x 2 1 1 2 13. Interpolyasiyalash jarayonining kaysi xolatida rasional funksiyalar sinfi olinadi: Funksiya berilgan nuktalarda cheksizga aylanadigan bulsa. Chizikli funksiyalar bulsa Chizikli bulmagan funksiyalar bulsa Davriy funksiyalar bulsa 14. 1 1 n M matrisa kaysi kurinishga ega: 0 0 0 1 0 0 ... 0 0 0 ... ... 0 1 0 ... 0 0 1 1 , 3 2 1 1 nn n n n n n n a a a a a M 1 0 0 0 ... 0 0 0 ... 0 0 1 ... 2 1 1 1 n n P P P M 1 1 1 A M n nn n n n n n a a a a a a a a a M .... ... ... 2 2 22 1 12 1 21 11 1 1 15. Interpolyasiyalash algebraik deyiladi, agar … Darajali kupxadlar olinsa Algebraik funksiya olinsa Transendent funksiya olinsa Rasional funksiya olinsa 16. Agar davriy funksiya bulsa, {R(x)} sinfi sifatida kaysi funksiyalar sinfi olinadi: Trigonometrik funksiyalar Chizikli funksiyalar Davriy bulmagan funksiyalar olinsa 281 Chizikli bulmagan funksiyalar 19. Trapesiya formulasining koldik xadini aniklang: h x x i i , R= ) ( 12 3 y h R= ) ( 12 4 y h R= ) ( 6 2 y h R= ) ( 12 3 y h 20. Teskari matrisani topish formulasini kursating: nn n n n n A A A A A A A A A A ,... ,... ,... 1 2 1 2 22 21 1 12 11 1 nn n n n A A A A A A A ,... ,... 2 1 1 21 11 1 * 1 A A E A 1 21. Kaysi shart bajarilganda Nyutonning 2-chi interpolyasion formulasini kullash kulay: Agar 0 x x va x 1 x ga yakin bulsa Agar 0 x x bulsa va x 0 x ga yakin Agar 0 x x bulsa va x 0 x ga yakin buladi Agar 0 x x bulsa va x n x ga yakin buladi 22. Zeydel metodining yakinlashish shartini kursating: 1 max 1 max 1 1 n i ii ij j n j ii ij i a a a a 1 ) (k i i x x ) ( ) ( max 1 max k i k i i x x x 1 , 1 1 1 n i ij n j ij 23. Krыlov metodi bilan i y larni topish formulasini kursating: n j n j ij n i y a y 1 ) 1 ( ) ( n j ij n i a y 1 ) ( n i n j n i y y 1 ) 1 ( ) ( i ij n i y a y ) ( 24. Gaussning 1-interpolyasion formulasini kursating: 282 .... ! 3 ) 1 ( ! 2 ) ( 1 3 ] 3 [ 1 2 ] 2 [ 0 0 y q y q y q y x P .... ! 3 ) 1 ( ! 2 ) ( 1 3 ] 3 [ 1 2 ] 2 [ y q y q x P .... ! 3 ) 1 ( ! 2 ) ( 2 ] 3 [ 1 ] 2 [ 0 0 y q y q qy y x P .... ! 3 ! 2 ) ( 1 3 1 2 0 0 y y y q y x P 25. Kuyidagi tenglamani Nyuton usuli bilan yechish algoritmini kursating: 0 1 2 3 x x 2 3 1 2 2 3 1 n n n n n x x x X X 2 3 1 2 2 1 2 3 1 n n n n x x x X X 2 3 1 2 2 2 3 1 x x x X X n n 2 3 1 2 2 3 1 n n n n n x x x X X 26. Kuyidagi 1 1 1 1 0 0 0 0 ) ( ) ( , ) ( ) ( , ), ( ) ( ) ( b u b u u l a u a u u l b x a x f u x q u x p u Lu ikkinchi tartibli oddiy differensial tenglama uchun kuyilgan chegaraviy masalada ) ( ), ( ), ( x f x q x p funksiyalar kaysi sinfga taalukli: ] , [ ) 2 ( b a C ] , [ b a C ] , [ b a L ] , [ b a L p 27. Kesmani ikkiga bulish metodining asosiy goyasi nimadan iborat: [a, b] - da uzluksiz ) (x f va ) ( ) ( b f a f < 0 ) (x f [a va b] da uzluksiz ) (x f uzluksiz ) ( ) ( b f a f > 0 28. Ikkinchi tartibli oddiy differensial tenglama uchun kuyilgan chegaraviy masalani takribiy usullar bilan (kallokasiya, eng kichik kvadratlar, integral usuli, soxachalar usuli, Galerkin usuli va boshkalar) yechishda ] , . . . , , , [ 2 1 n a a a x tafovut funksiyasining ifodasini keltirib chikaring: n k k k x L a x f x L 1 0 ) ( ) ( ) ( n k k k i x L a x f x L 1 ) ( ) ( ) ( 283 n k k k x a x f x L 1 0 ) ( )) ( ) ( ( n k k k x f x L a x f x L 1 0 ) ( ) ( )) ( ) ( ( 29. Oddiy differensial tenglama uchun kuyilgan chegaraviy masalani UK otish usuli bilan Koshi masalasiga keltirishda UK oitsh burchagi ni aniklash uchun tenglamani keltirib chikaring: 0 ) , 1 ( ) ( 1 y y a F 0 ) , 1 ( ) ( 1 y y a F 0 ) , 1 ( ) ( 1 y y a F 0 ) , 1 ( ) ( 1 y y a F 30. Ikkinchi tartibli oddiy differensial tenglama uchun kuyilgan chegaraviy masalalarni kallokasiya usuli bilan yechganda: Berilgan nuktalarda tafovut funksiyasi nolga tenglanadi Tafovut funksiyasining kvadrati minimallashtiriladi Bazis funksiyalar tafovut funksiyasiga ortogonal kilib tanlanadi Berilgan nuktalarda tafovut funksiyasi minimallashtiriladi 31. Xar kanday a musbat sonni chekli yoki cheksiz unli kasr shaklda yozishni kursating: ... 10 ... 10 10 10 1 1 2 2 1 1 n m n m m m m m m m f f f f a ... 10 10 1 1 m m m m f f a ... 10 10 1 m m m m a ... 10 10 1 1 1 m m m m a 32. Yigindining absolyut xatosini topish formulasini kursating: n x x x x U ... 3 2 1 n X U ... 2 1 n x X X U ... 2 1 n X U ... 2 1 n x X X U ... 2 1 33. Ikkita takribiy son ayirmasining limit – absolyut xatosini topish formulasini kursating: 2 1 x x U 2 1 x x U 2 1 x x U 2 1 x x U 34.Kupaytmaning nisbiy xatosini kursating: n x x x U .... 2 1 n n x x x x x x U U ... 2 2 1 1 n x x x U ... 2 1 n x x x U ... 2 1 U U 35. Darajaning nisbiy xatosini kursating: U = x m 284 x u m x n m 1 ux m u n x m u 36. 10 , 1 1 0 n x dx J integralni kiymatini Simpson formulasi yordamida aniklang: J=0,69315 J=0,61416 J=0,52411 J=0,59315 37. Agar funksiyaning kiymati xisoblanishi kerak bulgan nuktadagi kiymati jadvalning oxirida bulsa kaysi interpolyasion formulani ishlatish urinli: Nyutonning 2-chi formulasini Lagranj formulasi Bessel formulasi Gaussning 2- chi formulasi Download 5.01 Kb. Do'stlaringiz bilan baham: |
Ma'lumotlar bazasi mualliflik huquqi bilan himoyalangan ©fayllar.org 2024
ma'muriyatiga murojaat qiling
ma'muriyatiga murojaat qiling