Anomalous solute transport in complex media Abstract
Download 276.08 Kb. Pdf ko'rish
|
7-203-216
204
| H. G. Sun et al. [5] D. N. Bradley, G. E. Tucker, and D. A. Benson, Fractional dispersion in a sand bed river, J. Geophys. Res., 115 (2010), F00A09. [6] D. Chen, H. G. Sun, and Y. Zhang, Fractional dispersion equation for sediment suspension, J. Hydrol., 491 (2013), 13–22. [7] J. H. Cushman and T. R. Ginn, Fractional advection-dispersion equation: A classical mass balance with convolution-Fickian flux, Water Resour. Res., 36 (2000), 3763–3766. [8] E. Foufoula-Georgiou, V. Ganti, and W. Dietrich, A nonlocal theory of sediment transport on hillslopes, J. Geophys. Res., 115 (2010), F00A16. [9] V. Ganti, M. M. Meerschaert, E. Foufoula-Georgiou et al., Normal and anomalous diffusion of gravel tracer particles in rivers, J. Geophys. Res., 115 (2010), F00A12. [10] K. M. Hill, L. DellAngelo, and M. M. Meerschaert, Heavy-tailed travel distance in gravel bed transport: An exploratory enquiry, J. Geophys. Res., 115 (2010), F00A14. [11] G. H. Huang, Q. Z. Huang, and Z. B. Han, Evidence of one-dimensional scale-dependent fractional advection-dispersion, J. Contam. Hydrol., 85 (2006), 53–71. [12] B. Q. Lu, Y. Zhang, C. M. Zheng et al., Comparison of time nonlocal transport models for characterizing non-Fickian transport: From mathematical interpretation to laboratory application, Water, 10(6) (2018), 778. [13] M. M. Meerschaert, Y. Zhang, and B. Baeumer, Tempered anomalous diffusion in heterogeneous systems, Geophys. Res. Lett., 35(17) (2008), L17403. [14] R. Metzler and J. Klafter, The random walk’s guide to anomalous diffusion: A fractional dynamics approach, Phys. Rep., 339 (2000), 1–77. [15] D. M. Reeves, D. A. Benson, and M. M. Meerschaert, Transport of conservative solutes in simulated fracture networks: 1. Synthetic data generation, Water Resour. Res., 44 (2008), W05404. [16] R. Schumer, D. A. Benson, and M. M. Meerschaert et al., Eulerian derivation of the fractional advection-dispersion equation, J. Contam. Hydrol., 48 (2001), 69–88. [17] R. Schumer, D. A. Benson, M. M. Meerschaert et al., Fractal mobile/immobile solute transport, Water Resour. Res., 39 (2003), 1296. [18] R. Schumer, M. M. Meerschaert, and B. Baeumer, Fractional advection-dispersion equations for modeling transport at the earth surface, J. Geophys. Res., Earth Surf., 114 (2009), F00A07. [19] H. G. Sun, A. Chang, W. Chen, and Y. Zhang, Anomalous diffusion: fractional derivative equation models and applications in environmental flows, Sci. Sin., Phys. Mech. Astron., 45 (2015), 104702. [20] H. G. Sun, W. Chen, and Y. Q. Chen, Variable-order fractional differential operators in anomalous diffusion modeling, Phys. A, 388 (2009), 4586–4592. [21] H. G. Sun, W. Chen, H. Sheng et al., On mean square displacement behaviors of anomalous diffusions with variable and random orders, Phys. Lett. A, 374(7) (2010), 906–910. [22] H. G. Sun, Y. Q. Chen, and W. Chen, Random-order fractional differential equation models, Signal Process., 91 (2011), 525–530. [23] H. G. Sun, Y. Zhang, W. Chen et al., Use of a variable-index fractional-derivative model to capture transient dispersion in heterogeneous media, J. Contam. Hydrol., 15 (2014), 47–58. [24] R. Toledo-Hernandez, V. Rico-Ramirez, and G. A. Iglesias-Silva et al., A fractional calculus approach to the dynamic optimization of biological reactive systems. Part I: Fractional models for biological reactions, Chem. Eng. Sci., 117 (2014), 217–228. [25] G. C. Wu, D. Baleanu, and S. D. Zeng et al., Discrete fractional diffusion equation, Nonlinear Dyn., 80 (2015), 281–286. [26] G. M. Zaslavsky, Chaos, fractional kinetics, and anomalous transport, Phys. Rep., 371 (2002), 461–580. Anomalous solute transport in complex media | 205 [27] Y. Zhang, B. Baeumer, L. Chen, D. M. Reeves, and H. G. Sun, A fully subordinated linear flow model for hillslope subsurface stormflow, Water Resour. Res., 53 (2017), 3491–3504. [28] Y. Zhang and D. A. Benson, Lagrangian simulation of multidimensional anomalous transport at the MADE site, Geophys. Res. Lett., 35 (2008), L07403, 10.1029/2008GL033222. [29] Y. Zhang, D. A. Benson, M. M. Meerschaert et al., Random walk approximation of fractional-order multiscaling anomalous diffusion, Phys. Rev. E, 74 (2006), 026706. [30] Y. Zhang, D. A. Benson, and D. M. Reeves, Time and space nonlocalities underlying fractional-derivative models: Distinction and literature review of field applications, Adv. Water Resour., 32 (2009), 561–581. [31] Y. Zhang, L. Chen, D. M. Reeves et al., A fractional-order tempered-stable continuity model to capture surface water runoff, J. Vib. Control, 22(8) (1993–2003), 2016. [32] Y. Zhang, R. L. Martin, D. Chen et al., A subordinated advection model for uniform bedload transport from local to regional scales, J. Geophys. Res., Earth Surf., 119 (2014), 2711–2729. Document Outline
Download 276.08 Kb. Do'stlaringiz bilan baham: |
Ma'lumotlar bazasi mualliflik huquqi bilan himoyalangan ©fayllar.org 2024
ma'muriyatiga murojaat qiling
ma'muriyatiga murojaat qiling