Article in Philosophical Transactions of The Royal Society a mathematical Physical and Engineering Sciences · January 004 doi: 10. 1098/rsta. 2003


Download 377.19 Kb.
Pdf ko'rish
bet4/15
Sana01.01.2023
Hajmi377.19 Kb.
#1074231
1   2   3   4   5   6   7   8   9   ...   15
Bog'liq
Phil.Trans.

3. Nonlinear optics
One of the most effective techniques to overcome the spectral limitations of lasers is
to exploit nonlinear optics. The potential of nonlinear processes for the generation
of tunable coherent radiation was recognized soon after the invention of the laser
(Armstrong et al . 1962). Nonlinear optical techniques are based on a fundamentally
different principle from lasers. While the process of light emission in a laser is a
direct result of the transitions between the energy levels in the laser gain medium,
nonlinear optical processes rely on the alternative mechanism for light generation,
namely electric dipole oscillations. They can be understood in terms of a simple
classical picture.
Phil. Trans. R. Soc. Lond. A (2003)


03TA2008/4
M. Ebrahimzadeh
etc.
_
+
d
S
incident
small E
0
emitted
E
0
(
,
)
ν λ
(h
E)
ν
centrosymmetric
non-centrosymmetric
d
S
incident electric
field strength
dipole
displacement
d
S
incident electric
field strength
dipole
displacement
(
'',
''
 
)
ν λ
(
,
)
ν λ
(
',
'
 
)
ν λ
Figure 2. The regime of nonlinear optics. The large electric field strength of the input optical
wave induces a dipole displacement which is large and becomes increasingly nonlinear at larger
field strengths. The emitted optical wave now contains an infinite range of new frequencies (wave-
lengths) above and below the input frequency. The exact form of dipole response depends on the
structural symmetry of the material. For centrosymmetric crystals, the response is symmetric
with respect to the field direction, whereas for non-centrosymmetric crystals, the response is
asymmetric. The incident amplitude,
E
0
, and frequency,
ν, are as defined in figure 1.
As discussed in
§ 1, in a suitable dielectric material, dipole oscillations can result in
the emission of light waves with characteristics determined by the dipole moment and
dipole oscillation frequency. Under equilibrium, the dipoles are in a state of rest but,
when subjected to an external optical field, they can be set into oscillations through
interaction with the oscillating electric field of the incoming light wave. When the
magnitude of the input electric field (i.e. its intensity) is small, dipole displacement
follows a linear dependence on the input field strength. This is depicted in figure 1,
where the dipole displacement, d, from rest is plotted as a function of the input
electric field strength, S. The result is dipole oscillation at the same frequency as the
input field. This is the regime of linear optics. The emitted optical wave from the
dipole is also of the same frequency as the input field. The end result is the familiar
phenomenon of refractive index, where the input wave is re-radiated at the same
frequency, but its propagation is slowed down by the interaction with the oscillating
dipoles in the medium.
Phil. Trans. R. Soc. Lond. A (2003)


Parametric light generation
03TA2008/5
On the other hand, when the input electric field is large, dipole displacement
becomes nonlinear at the higher field strengths. This is the regime of nonlinear
optics (figure 2). The exact form of nonlinear response depends on crystallographic
structure of the material. However, in either case the dipole oscillates not only at
the input frequency but also over an infinite range of frequencies, above and below
the input frequency.
† The resulting light emission from the oscillating dipole is thus
also over an infinite band of frequencies.
The potential of nonlinear optical processes is, thus, immediately obvious: they
provide a mechanism for the generation of new frequencies from an already available
input frequency. In other words, they provide a convenient technique for frequency
conversion of light from an old to a new spectral range. This is one of the most
basic principles of nonlinear optics, first formulated in 1962 (Armstrong et al . 1962),
which ultimately led to the award of the Nobel Prize in Physics to this field many
years later (Bloembergen 1981).
In analogy with the laser, the input field in a nonlinear optical process is also
commonly referred to as the pump. However, in contrast to the laser, nonlinear
effects can be achieved only with the use of an optical pump source and the pump
frequency must also be within material transparency and away from resonances. In
the photon picture, this implies a pump photon energy below the energy gap in the
material, that is E
p
E.
Clearly, for the onset of nonlinear optical processes an essential prerequisite is
a large input electric field. The attainment of such field strengths requires optical
intensities as large as ca. 10
13
W cm
2
, which can be provided only by a laser. The
coherence properties of the laser allow focusing to extremely small areas (less than
10
6
cm
2
) to create the necessary optical intensities. It is thus unsurprising that
nonlinear optical effects could be observed only after the invention of the laser.

Download 377.19 Kb.

Do'stlaringiz bilan baham:
1   2   3   4   5   6   7   8   9   ...   15




Ma'lumotlar bazasi mualliflik huquqi bilan himoyalangan ©fayllar.org 2024
ma'muriyatiga murojaat qiling