Bir nexa ozgaruvchi funksiyaning xususiy hosilalari va to'liq differensial murakkab funksiyaning xosilalari oshkormas funksiyaning xosilslsri


Download 463 Kb.
bet3/7
Sana25.04.2023
Hajmi463 Kb.
#1398092
1   2   3   4   5   6   7
Bog'liq
BIR NEXA OZGARUVCHI FUNKSIYANING XUSUSIY HOSILALARI VA TO\'LIQ DIFFERENSIAL MURAKKAB FUNKSIYANING XOSILALARI OSHKORMAS FUNKSIYANING XOSILSLSRI

Urinma tekislik va sirtga normal.
Sirtga nuqtada o’tkazilgan urinma tekislik deb sirtda nuqta orqali o’tkazilgan urinmalar joylashgan tekislikga aytiladi.
Sitga nuqtadagi normal deb nuqtadan o’tuvchi va bu nuqtada o’tkazilgan urinma tekislikka perpendikulyar bo’lgan to’g’ri chiziqqa aytiladi.
Agar sirt tenglama bilan berilgan bo’lsa, u xolda nuqtada bu sirtga o’tkazilgan urinma tekislik tenglamasi:

nuqta orqali sirtga o’tkazilgan normalning kanonik tenglamasi quyidagicha bo’ladi:

Agar sirt tenglama bilan oshkormas ko’rinishda berilgan bo’lsa sirtning nuqtasida o’tkazilgan urinma tekislik tenglamasi


Ko’rinishda normal tenglamasi esa

Ko’rinishda bo’ladi.
7.3.2 funksiyaning ikkinchi tartibli xususiy xosilasi deb birinchi tartibli xususiy xosilalardan olingan xususiy xosilalarga aytiladi.
Ikkinchi tartibli xususiy xosilalar quyidagicha belgilanadi:


va xususiy xosilalar aralash xosilalar deyiladi. Aralash xosilalar uzluksiz o’tgan nuqtalarda ularning qiymatlari teng bo’ladi.
Uchinchi va undan yuqori tartibli xususiy xosilalar xam shunday aniqlanadi.
1. Murakkab funksiyaning hosilasi. Aytaylik, u=(x) funksiya (a,b) intervalda, y=f(u) funksiya esa (c;d) da aniqlangan bo‘lib, bu funksiyalar yordamida y=f((x)) murakkab funksiya tuzilgan bo‘lsin (bunda, albatta, x(a,b) da u=(x)(c,d) bo‘lishi talab qilinadi).
Teorema. Agar u=(x) funksiya x(a,b) nuqtada hosilaga ega, y=f(u) funksiya esa u=(x) nuqtada hosilaga ega bo‘lsa, u holda y=f((x)) murakkab funksiya x nuqtada hosilaga ega va
(f((x)))’=f’(u)’(x) (1)
formula o‘rinli bo‘ladi.
Isboti. u=(x) funksiya x nuqtada hosilaga ega bo‘lganligi uchun uning x nuqtadagi orttirmasini (2.1) formuladan foydalanib
u=’(x)x+x (2)
ko‘rinishda yozish mumkin, bu erda x0 da 0.
Shunga o‘xshash, y=f(u) funksiyaning u nuqtadagi orttirmasini
y=f’(u)u+u (3)
ko‘rinishda yozish mumkin, bunda u0 da 0.
So‘ngi (3) tenglikdagi u o‘rniga uning (2) tenglik bilan aniqlangan ifodasini qo‘yamiz. Natijada
y=f’(u)(’(x)x+x)+(’(x)x+x)= f’(u)’(x)x+(f’(u)+’(x)+)x
tenglikka ega bo‘lamiz.
Agar x0 bo‘lsa, (2) tenglikdan 0 va u0 bo‘lishi, agar u0 bo‘lsa, u holda (3) tenglikdan 0 ekanligi kelib chiqadi. Bulardan esa x0 da f’(u)+’(x)+ cheksiz kichik funksiya ekanligi kelib chiqadi, uni  bilan belgilaymiz.
Shunday qilib, y=f’(u)’(x)x+x tenglik o‘rinli. Bundan = f’(u)’(x)+ va =f’(u)’(x) o‘rinli ekanligi kelib chiqadi. Bu esa y’= f’(u)’(x) ekanligini isbotlaydi.
Misol. y= funksiyaning hosilasini toping.
Yechish. Bu erda y=u4, u= . Demak, y’=(u4)’ ’= =4u3 =8 .
Amalda (1) tenglikni
yoki yx’=yu’ux
ko‘rinishda yozib, quyidagi qoida tarzida ifodalaydi:
Murakkab funksiyaning erkli o‘zgaruvchi bo‘yicha hosilasi oraliq o‘zgaruvchi bo‘yicha olingan hosila va oraliq o‘zgaruvchidan erkli o‘zgaruvchi bo‘yicha olingan hosilalar ko‘paytmasiga teng.
Bu qoidani quyidagicha talqin qilish mumkin: agar berilgan nuqtada y o‘zgaruvchi u ga nisbatan yu marta tez, u esa x ga nisbatan ux marta tez o‘zgarsa, u holda y o‘zgaruvchi x ga nisbatan yu’ux marta tez o‘zgaradi, ya’ni yx’=yu’ux.
Yuqoridagi qoida uchta, umuman chekli sondagi hosilaga ega bo‘lgan funksiyalar kompozitsiyasi uchun ham o‘rinli. Masalan, agar y=f(u), u=(t), t=h(x) bo‘lsa, u holda yx’=yu’ut’tx tenglik o‘rinli bo‘ladi.



Download 463 Kb.

Do'stlaringiz bilan baham:
1   2   3   4   5   6   7




Ma'lumotlar bazasi mualliflik huquqi bilan himoyalangan ©fayllar.org 2024
ma'muriyatiga murojaat qiling