Book · January 994 citations 110 reads 2,264 authors
Download 5.72 Mb. Pdf ko'rish
|
1994 Book DidacticsOfMathematicsAsAScien
Différentielles et procédures différentielles au niveau du premier cycle universitaire.
Research Report. Ed. IREM Paris 7. Artaud, M. (1993). La mathématisation en économie comme problème didactique: Une étude exploratoire. Doctoral dissertation, Université d'Aix-Marseille II. Artigue, M. (1989a). Ingénierie didactique. Recherches en Didactique des Mathématiques, 9(3), 281-308. Artigue, M. (1989b). Une recherche d'ingénierie didactique sur l'enseignement des equa- tions différentielles. Cahiers du Séminaire de Didactique des Mathématiques et de l'In- formatique de Grenoble. Ed. IMAG. Artigue, M., Menigaux, J., & Viennot, L. (1990). Some aspects of student's conceptions and difficulties about differentials. European Journal of Physics, 11, 262-272. Artigue, M., & Rogalski, M. (1990). Enseigner autrement les équations différentielles en DEUG première année. In Enseigner autrement les mathématiques en DEUG A première année (pp. 113-128). ed. IREM de Lyon. Artigue, M., & Perrin Glorian, M. J. (1991) Didactical engineering, research and develop- ment tool, some theoretical problems linked to this duality. For the Learning of Mathematics, 11, 13-18. Artigue, M. (1992). Functions from an algebraic and graphic point of view: Cognitive diffi- culties and teaching practices. In The concept of function: Aspects of epistemology and pedagogy. (pp. 109-132). MAA Notes No. 28. Artigue, M. (1993). Enseignement de l'analyse et fonctions de référence. Repères IREM 11, 115-139. Arsac, G. (1992). L'évolution d'une théorie en didactique: L'exemple de la transposition di- dactique. Recherches en Didactique des Mathématiques, 12(1), 33-58. Brousseau, G. (1986). Les fondements de la didactique des mathématiques. Doctoral disser- tation, Université de Bordeaux I. Chevallard, Y. (1991). La transposition didactique (2nd ed.). Grenoble: La Pensée Sauvage Chevallard, Y. (1992). Concepts fondamentaux de la didactique: Perspectives apportées par une perspective anthropologique. Recherches en Didactique des Mathematiques, 12(1), 73-112. Douady, R. (1984). Dialectique outil / objet et jeux de cadres, une réalisation dans tout le cursus primaire. Doctoral dissertation, Université Paris 7. Hubbard, J, & West, B. (1992). Ordinary differential equations. Heidelberg: Springer. Robert, A. (1992). Projet longs et ingénieries pour l'enseignement universitaire: Questions de problématique et de méthodologie. Un exemple: Un Enseignement annuel de licence en formation continue. Recherches en Didactique des Mathématiques, 12(2.3), 181-220. Robert, A., Rogalski, J., & Samurcay, R. (1987). Enseigner des méthodes. Cahier de didac- tique'No. 38. Ed. IREM Paris 7. Schoenfeld, A. (1985). Mathematical problem solving. Orlando, FL: Academic Press. Tavignot, P. (1991). L'analyse du processus de transposition didactique: L'exemple de la symétrie orthogonale au collège. Doctoral dissertation, Université Paris V. MICHELE ARTIGUE MATHEMATICAL CURRICULA AND THE UNDERLYING GOALS Uwe-Peter Tietze Göttingen 1. CURRICULUM DEVELOPMENT: A SURVEY In the early 1960s, the so-called Sputnik shock led to a radical reform of the American curriculum. This reform had, after a delay of several years, a strong impact on education in Germany. Discussions by the OECD (Organization for Economic Cooperation and Development) were also in- fluential. Education was no longer seen merely as a way of cultivating the personality, but – like capital and labor – was then regarded as a crucial pro- duction factor, one that determines whether there will be economic growth in a country or not. While the OECD stressed training to improve the quali- fications of future users of mathematics, the leading mathematics educators in the Federal Republic of Germany deemed it crucial to bridge the wide gap between the school and the university. As a result, mathematics educa- tion was decisively influenced by a structural mathematics initiated by Bourbaki, which had become generally accepted at the universities. The re- formers attempted a fundamental revision of the curriculum by emphasizing a set-theoretical approach to primary school mathematics and by stressing algebraic and logical structures in the lower secondary school. The recon- struction of calculus in terms of an extensive formalization and the trans- formation of analytic geometry into linear algebra was a later step. Although the OECD furnished convincing arguments for the necessity to emphasize teaching of stochastics in school as early as 1959, they were ignored almost until the middle of the 1970s. One explanation could be that the predomi- nant way of thinking in formal mathematical structures had blocked the in- sight into other possibilities. When developing new curricula, mathematics educators for a long time took little notice of the general educational discussion on the main goals guiding German school reform, far less so than educators of other school subjects. In this comprehensive discussion, questions concerning "science propaedeutics" and "exemplary teaching" were of great importance (see Klafki, 1984). The new mathematical curricula were mainly oriented toward a modern, highly formalized, pure mathematics. In addition to the concep- tion of new math, curriculum development concerning the German high school ("Gymnasium") was influenced by a teaching technology based on R. Biehler, R. W. Scholz, R. Sträßer, B. Winkelmann (Eds.), Download 5.72 Mb. Do'stlaringiz bilan baham: |
Ma'lumotlar bazasi mualliflik huquqi bilan himoyalangan ©fayllar.org 2024
ma'muriyatiga murojaat qiling
ma'muriyatiga murojaat qiling