Book · January 994 citations 110 reads 2,264 authors
Download 5.72 Mb. Pdf ko'rish
|
1994 Book DidacticsOfMathematicsAsAScien
Multidisciplinary Newsletter for Activity Theory, 7/8, 30-35.
Dunkin, M. J., & Biddle, B. J. (1974). The study of teaching. New York: Holt, Rinehart & Winston. Feyerabend, P. (1991). Three dialogues on knowledge. Oxford: Blackwell. Galison, P. L. (1987). How experiments end. Chicago, IL: University of Chicago Press. Glasersfeld, E. von (1991). Distinguishing the observer: An attempt at interpreting Maturana. Methodologia, V(8), 57-68. Goffman, E. (1974). Frame analysis - An essay on the organization of experience. Cambridge, MA: Harvard University Press. Hiebert, J., & Carpenter, T. P. (1992). Learning and teaching with understanding. In D. A. Grouws (Ed.), Handbook of research on mathematics teaching and learning (pp. 65-97). New York: MacMillan. Hilgard, E. R., & Bower, G. H. (1975). Theories of learning. Englewood Cliffs, NJ: Prentice-Hall. Jaroschewski, M. (1975). Psychologic im 20. Jahrhundert. Berlin: Volk und Wissen VEB. Jaspers, K. (1947). Von der Wahrheit. München: Piper Kozulin, A. (1990). Vygotsky's psychology: A biography of ideas. London: Harvester Wheatsheaf. Krummheuer, G. (1992). Lernen mit "Format": Elemente einer interaktionistischen Lerntheorie. Weinheim: Deutscher Studien Verlag. Krummheuer, G., & Voigt, J. (1991). Interaktionsanalysen von Mathematikunterricht: Ein Überblick über einige Bielefelder Arbeiten. In H. Maier & J. Voigt (Eds.), Interpretative Unterrichtsforschung. IDM-series Untersuchungen zum Mathematikunterricht, Vol. 17 (pp. 17-32). Köln: Aulis Verlag Deubner. Lektorskij, V. A. (1984). Subject - Object - Cognition. Moscow: Progress Publ. Lektorskij, V. A., & Engeström, Y. (Eds.). (1990). Activity: The theory, methodology and problems. Issues in Contemporary Soviet Psychology Series. Orlando, FL: Deutsch. Lichtenberg, G. Ch. (1971). Schriften und Briefe (Vol. 2). München: Hanser Verlag. Makarenko, A.S. (1954). Der Weg ins Leben - Ein pädagogisches Poem. Berlin: Aufbau- Verlag. [Original work published 1940] Markowitz, J. (1986). Verhalten im Systemkontext: Zum Begriff des sozialen Epigramms. Frankfurt/Main: Suhrkamp. Maturana, H. R., & Varela, F. J. (1980). Autopoiesis and cognition: The realization of the living. In R. S. Cohen & M. W. Wartofsky (Eds.), Boston studies in the philosophy of science (Vol. 42). Dordrecht, Netherlands: Reidel. Mehan, H., & Wood, H. (1975). The reality of ethnomethodology. New York: Wiley. Miller, M. (1986). Kollektive Lernprozesse. Studien zur Grundlegung einer soziologischen Lerntheorie. Frankfurt/Main: Suhrkamp. Minsky, M. (1987). The society of mind. London: Heinemann Pierce, C. S. (1965): Collected papers II - Elements of logic. Cambridge, MA: Harvard University Press. Pestalozzi, J. H. (1946). Stanser Brief. In P. Baumgartner (Ed.), Werke in 8 Bänden. Band 3: Schriften 1798-1804 (pp. 91-124). Erlenbach-Zürich, Switzerland: Rotapfel-Verlag. [Original work published 1799] Ramsey, W., Stich, S. P., & Rumelhart, D. E. (1991). Philosophy and connectionist theory. In D. E. Rumelhart (Ed.), Developments in connectionist theory. Hillsdale, NJ: Erlbaum. Resnick, L. B. (1989). Knowing, learning, and instruction. Hillsdale, NJ: Erlbaum. Resnick, L., Levine, J. M., & Teasley, S. D. (Eds.). (1991). Perspectives on socially shared cognition. Washington, DC: American Psychological Association. 145 PERSPECTIVES ON CLASSROOM INTERACTION Rueckl, J. G., & Kosslyn, S. M. (1992). What good is connectionist modelling? A dialogue. In A. F. Healy, S. M. Kosslyn, & R. M. Shiffrin (Eds.), From learning theory to connec- tionist theory: Essays in honor of William K. Estes (Vol.1). Hillsdale, NJ: Erlbaum. Rumelhart, D. E. (1989). The architecture of mind: A connectionist approach. In M. I. Posner (Ed.), Foundations of cognitive science (pp. 133-159). Cambridge, MA: MIT Press. Snow, R. E., & Farr, M. J. (Eds.). (1987). Aptitude, learning, and instruction. Vol. 2: Cognitive process analyses of learning and problem solving. Hillsdale, NJ: Erlbaum Snow, R. E., Federico, P.-A., & Montague, W. E. (Eds.). (1980). Aptitude, learning, and instruction. Vol. 1: Cognitive process analyses of aptitude. Hillsdale, NJ: Erlbaum. Varela, F. J., & Thompson, E. (1991). The embodied mind. Newton, MA: MIT Press. Veer, R. van der, & Valsiner, J. (1991). Understanding Vygotsky: A quest for synthesis. Oxford: Blackwell. Voigt, J. (1984). Interaktionsmuster und Routinen im Mathematikunterricht. Weinheim: Beltz. Vygotsky, L. S. (1985). Die Krise der Psychologie in ihrer historischen Bedeutung. In J. Lompscher (Ed.), Ausgewählte Schriften (Vol. 1, pp. 57-277). Köln: Pahl-Rugenstein. Vygotsky, L. S. (1992). Geschichte der höheren psychischen Funktionen. W. Jantzen, J. Lompscher, A. Métraux, & M. Stadler (Eds.), Fortschritte der Psychologie (Vol. 5). Münster: Lit Verlag. [Original work published 1960] 146 WORKING IN SMALL GROUPS: A LEARNING SITUATION? Colette Laborde Grenoble 1. THEORETICAL FRAMEWORK AND QUESTIONS In a widespread approach in "didactique des mathématiques," learning is considered as an adaptation to a new situation. In mathematics, this new sit- uation is a problem students cannot solve with their available knowledge but for which they can develop new solution tools. These new tools are starting points for new knowledge. In this approach, it is also commonly as- sumed that this process of adaptation is not spontaneous, and conditions must be organized to allow it. Learning situations must be designed by the teacher. One of the main aims of didactique des mathématiques is to charac- terize these learning situations. This approach seems to consider learning only as an individual interac- tion process between knowledge and student, whereas it is obvious that classroom situations are essentially social: 1. the choices about knowledge to be taught meet some social and cul- tural expectations; 2. the students are involved as cognitive and social subjects (in particular, even their representations of mathematical contents are partially of a social nature); 3. the progress of a class is based on social interactions between partners (teacher-students and student-student). Vygotsky (1934), who distinguished the development of spontaneous concepts and of scientific concepts (but recognized the links between them), claimed the following thesis: 1. knowledge coming from the social environment plays an important role in the representations of scientific concepts by the child; 2. but the child does not assimilate the scientific concepts as such and re- constructs these concepts on his or her own. In this thesis, intrapersonal and interpersonal processes seem to interact in the construction of scientific knowledge by the child. This presentation is an attempt 1. to elicit the role of interpersonal processes in the construction of math- ematical knowledge in mathematics classrooms in the specific case of stu- R. Biehler, R. W. Scholz, R. Sträßer, B. Winkelmann (Eds.), Didactics of Mathematics as a Scientific Discipline, 147-158. © 1994 Dordrecht: Kluwer Academic Publishers. Printed in the Netherlands. WORKING IN SMALL GROUPS dents working together at a joint task of finding a common solution to a mathematical problem; 2. to determine some variables affecting these processes. These group work situations are systematically used by some teachers in their class; they are also being developed in curricula that provide opportu- nities for project work (like in the UK), or recently in France in so-called "modules" (grade 10), in which mathematical activities not necessarily linked to the curricula can be organized in an open way. The introduction of computers in the classrooms also gives rise to joint work at the computer since very often the number of machines is limited. In group work situations, students are faced with two kinds of problem: They must solve a mathematical problem, but they have to achieve this through a social activity. Thus, they are additionally confronted with a so- cial problem. In order to know more about the role of interpersonal pro- cesses in the individual construction of mathematical knowledge, I will fo- cus my study on the interrelations between these two kinds of problem. Students must jointly solve a problem and agree on a common solution. The problem given to them does not depend on the fact that the solution must be found by one student alone or by a group of students (except in or- ganized situations of task division like in some Russian experiments quoted in section 5). The respective roles of the partners are not determined by the situation: A student may agree to everything that is proposed by his or her Download 5.72 Mb. Do'stlaringiz bilan baham: |
Ma'lumotlar bazasi mualliflik huquqi bilan himoyalangan ©fayllar.org 2024
ma'muriyatiga murojaat qiling
ma'muriyatiga murojaat qiling