Book · January 994 citations 110 reads 2,264 authors


Download 5.72 Mb.
Pdf ko'rish
bet55/176
Sana20.10.2023
Hajmi5.72 Mb.
#1712691
1   ...   51   52   53   54   55   56   57   58   ...   176
Bog'liq
1994 Book DidacticsOfMathematicsAsAScien

Collectivist Perspectives
Learning is enculturation into pre-
existing societal structures,
supported by mediator means or ade-
quate representations.
Prototype: Activity Theory.
Individualistic Perspectives
Learning is individual change,
according to steps of cognitive deve-
lopment and to context.
Prototype: Cognitive Psychology.
Interactionist Perspectives
Teacher and students interactively constitute the culture of the classroom,
conventions both for subject matter and social regulations emerge, commu-
nication lives from negotiation and taken-as-shared meanings.
Prototypes: Ethnomethodology, Symbolic Interactionism, Discourse Analysis
(Pragmalinguistics).


Pestalozzi (1946) also pointed to the social function of labor. The most fa-
mous case of a collectivist-oriented practice is Makarenko's work near
Poltava, Ukrainia, where he collected and educated dead-end youth
(besprisorniks) right after the revolution (1920-1928), reported in his
Pedagogical Poem (1940). In these two cases, quite different fundamental
convictions have led to very similar – and very successful – practices, and
both with severely damaged youth.
In mathematics education, things seem to be more complicated than in
general education. According to my recent work, I will limit these remarks
to elementary education in mathematics and, within this area, to the issues
of the understanding of mathematics itself and of language. The contrast
tried here contradicts the consequences from both the two extreme traditions
with the consequences drawn from the intermediate interactionist position.
On this level of discussion, it is clear that only quite general inferences are
possible.
5.1 Understanding Mathematics
Fundamentally different practices arise from whether mathematics is taken
as an objective truth, as a societal treasure, as something existing and docu-
mented objectively, or as a practice of shared mathematizing, guided by
rules and conventions emerging from this practice.
The first conviction will lead teachers to "introduce" children, to use
"embodiments" and "representations," which are structurally as "near to the
structure mathematically meant" and as little misleading or distracting as
possible. Children's errors will find corrections toward the expected correct
answer and so forth. Objectively existing structures and properties also give
space for "discovery" activities, given that the expected findings are in reach
of the present cognitive aptitudes (e.g., "zone of proximal development").
The latter conviction will lead teachers to organize their activities as part
of a practice of mathematizing, that is, as a challenging and supportive
"subculture" specific to this teacher and these children in this classroom,
which functions toward developing the students' "constructive abilities,"
their related self-concept, and self-organization, rather than as a manage-
ment through product control and permanent external assessments. The di-
versity of subjective constructions of meaning and the necessity to arrive at
viable adaptations – "taken-as-shared meanings" and "taken-as-shared regu-
lations" – requires optimal chances for discussions based on intensive expe-
riences and aiming at the negotiation of meanings. There is no discovery in
the classical sense, there is subjective construction of meaning only, since
"what is observed are not things, properties, or relations of a world that ex-
ists as such, but rather the results of distinctions made by the observer him-
self" (von Glasersfeld, 1991, pp. 60-61).
PERSPECTIVES ON CLASSROOM INTERACTION
140


5.2 Language
Related to language, again, we arrive at very different practices depending
on whether languaging is taken as the use of an objectively existing body of
language, of the storehouse of societal knowledge and prepared meanings,
or whether languaging is understood as a social practice of orienting.
Once we separate "language" and "activity," the primacy is given to ac-
tivity (see Brushlinsky, above), and learning will have to begin with activi-
ties in which language is used as a pregiven "tool." The "collective subject"
becomes "enculturated" into an already existing culture. The learning sub-
ject's creative inventions appear to be deviant moves, which have to un-
dergo correction toward the standardized use of the "mediating tools."
So long as language is considered to be denotative it will be necessary to look at
it as a means for the transmission of information, as if something were transmit-
ted from organism to organism . . . . when it is recognised that language is conno-
tative and not denotative, and that its function is to orient the orientee without re-
gard for the cognitive domain of the orienter, it becomes apparent that there is no
transmission of information through language. (Maturana & Varela, 1980, p. 32)
In the latter case, again, we arrive at the necessity for an ongoing negotia-
tion of meaning in the classroom, aiming not only at a viable adapting to
taken-as-shared meanings of the subject matter pointed at but also at a re-
lated clarifying of the taken-as-shared meanings of the signs and words in
use, and, particularly, at furthering the reflection of the underlying subjec-
tive constructive processes.
It is remarkable how far Vygotsky has pointed out the need to analyze
higher mental functions as processes. Thinking of everyday classroom
practices, the product orientation is still found to dominate the majority of
classrooms everywhere: Teachers' inventions follow their subjective image
of the product to be taught rather than ideas for developing useful construc-
tive and descriptive processes with students. It is only in a much later state
of rooted habits, conventions, and norms that a person's mathematizing can
develop the properties, so much beloved by mathematicians, of curtailment
and elegance, of forcing power, of precision and sharpness in thinking and
presenting – "since there is no other way of thinking it" (as Jaspers, 1947, p.
467 enthusiastically said). The product illusion, perhaps, is the most devas-
tating force in education, because it usually blinds the more knowledgeable
and (in terms of subject matter) better prepared teachers.
6. OUTLOOK: THE NEXT CATCHWORD – CONNECTIONISM
We should say: it is thinking, just as we say: it is thundering. To speak of cogito
is too much already, if we translate it into I am thinking. (Georg Christoph
Lichtenberg, 1971, in: Sudelbücher, K 76, p. 412. By the way, Vygotsky, 1992, p.
147, already has quoted the very same aphorism. He used it to introduce his ex-
cellent analysis of tying a knot in one's handkerchief and the related functioning
for remembering.)
HEINRICH BAUERSFELD
141


PERSPECTIVES ON CLASSROOM INTERACTION
More than 200 years ago, Lichtenberg already pointed at a crucial fact that
presently characterizes consequences from connectionist models. Indeed,
across the last years, computer models for human brain functioning have
come into favor under labels like "connectionism," "dynamic networks,"
and "parallel distributed processing," or "neural net" models. I am not inter-
ested in the technical realizations. But the interpretation of such models in
our field of mathematics education opens quite fascinating perspectives.
"The 'new connectionism' is causing a great stir in cognitive science and ar-
tificial intelligence" says Bereiter (1991, p. 10), himself a well-known
cognitivist before. Clearly, these models are simpler, more powerful, and al-
low more convincing interpretations of educational experience and research
outcomes than cognitive psychology has produced so far (see Varela, 1990,
1992; also, Hiebert & Carpenter, 1992; Ramsey, Stich, & Rumelhart, 1991;
Rueckl & Kosslyn, 1992).
Common to all of these models is the interpretation of the human brain as
a huge network consisting of nodes and connections, with many specialized
sets of nodes and connections as part of it. The brief reinterpretation of a
few key concepts from this perspective may enable the reader to assess the
persuasive power her or himself:

Download 5.72 Mb.

Do'stlaringiz bilan baham:
1   ...   51   52   53   54   55   56   57   58   ...   176




Ma'lumotlar bazasi mualliflik huquqi bilan himoyalangan ©fayllar.org 2024
ma'muriyatiga murojaat qiling