Book · January 994 citations 110 reads 2,264 authors
Download 5.72 Mb. Pdf ko'rish
|
1994 Book DidacticsOfMathematicsAsAScien
collective cultural and social process.
5. CONCLUSION The examples in the last section show that the Vygotskyan perspective is useful for studies on both low attainers and advanced learners. They have not been proposed to deny the usefulness of Piagetian analysis, but only to recall situations that seem to fit the Vygotskyan perspective. Maybe they can also be managed in a Piagetian framework, but the burden of proof rests on Piagetian researchers. Nevertheless I am not so sure that the game is worth the candle. As history of science teaches us, the exclusive long-term adhesion to one system could result in either ignoring relevant aspects of reality, if theoretical coherence gets the upper hand, or introducing into the system such complications as to make it no longer manageable, if the modeling of increasingly complex events is pursued. It seems to me that the only solution is to accept complementarity as a necessary feature of theoretical and empirical research in didactics of math- ematics and look for conceptual tools to cope with it successfully, as Steiner (1985) suggests in the developmental program of the international study group on Theory of Mathematics Education. APPROACHES TO CLASSROOM INTERACTION REFERENCES Artigue, M. (1992). Didactical engineering. In R. Douady & A. Rouchier (Eds.), Research in Didactique of Mathematics (pp. 41-66). Grenoble: La Pensée Sauvage. Balacheff, N. (1990a). Towards a problématique for research on mathematics teaching. Journal for Research in Mathematics Education, 21(4), 258-272. Balacheff, N. (1990b). Beyond a psychological approach of the psychology of mathematics education. For the Learning of Mathematics, 10(3), 2-8. Barra M., Ferrari M., Furinghetti F., Malara N. A., & Speranza F. (Eds.). (1992). The Italian research in mathematics education: Common roots and present trends. Progetto Strategico del C.N.R. - Tecnologie e Innovazioni Didattiche, 12. Bartolini Bussi, M. (1991). Social interaction and mathematical knowledge. In F. Furinghetti (Ed.), Proceedings of the 15th PME Conference, 1, 1-16. Bartolini Bussi, M. (1992). Mathematics knowledge as a collective enterprise. In F. Seeger & H. Steinbring (Eds.), The dialogue between theory and practice in mathematics education: Overcoming the broadcast metaphor (pp. 121-151). Materialien und Studien Band 38, IDM Bielefeld. Bartolini Bussi, M. (in press a). The mathematical discussion in primary school project: Analysis of long term processes. In L. Bazzini & H.-G. Steiner (Eds.), Proceedings of the Second Italian-German Bilateral Symposium on Didactics of Mathematics. Bartolini Bussi M. (in press b). Coordination of spatial perspectives: An illustrative exam- ple of internalization of strategies in real life drawing, The Journal of Mathematical Behavior. MARIA G. BARTOLINI BUSSI Bauersfeld, H. (1988). Interaction, construction and knowledge: Alternative perspectives for mathematics education. In T. A. Grouws & T. J. Cooney (Eds.), Perspectives on re- search on effective mathematics teaching (Vol. 1, pp. 27-46). Hillsdale NJ: Erlbaum. Bauersfeld, H. (1990). Activity theory and radical constructivism: What do they have in common and how do they differ? Occasional Paper 121, IDM Bielefeld. Bell, E. T. (1937). Men of mathematics. New York: Simon & Schuster. Boero, P. (1988). An innovative curriculum: Changes in didactic phenomena and related problems. In H.-G. Steiner & A. Vermandel (Eds.), Proceedings of the Second TME Conference (pp. 280-296). Bielefeld-Antwerpen. Boero, P. (1992). The crucial role of semantic fields in the development of problem solving skills in the school environment. In J. P. Ponte, J. F. Matos, J. M. Matos, & D. Fernandes (Eds.), Mathematical problem solving and new information technologies (pp. 77-91). Berlin: Springer. Brousseau, G. (1986). Théorisation des phénomenes d'enseignement des mathématiques. Postdoctoral dissertation, University of Bordeaux. Christiansen, B., & Walther, G. (1986). Task and activity. In B. Christiansen, A. G. Howson, & M. Otte (Eds.), Perspectives on mathematics education (pp. 243-307). Dordrecht: Reidel. Cobb, P., Wood T., & Yackel E. (in press). Discourse, mathematical thinking and class- room practice. In E. Forman, N. Minick & A. Stone (Eds.), Contexts for learning: Download 5.72 Mb. Do'stlaringiz bilan baham: |
Ma'lumotlar bazasi mualliflik huquqi bilan himoyalangan ©fayllar.org 2024
ma'muriyatiga murojaat qiling
ma'muriyatiga murojaat qiling