Book · January 994 citations 110 reads 2,264 authors
Download 5.72 Mb. Pdf ko'rish
|
1994 Book DidacticsOfMathematicsAsAScien
the 4 arithmetical operations with whole numbers and fractions
the 4 arithmetical operations with letters number systems (in particular the decimal system) negative numbers polynomials calculation with powers (in particular square and cubic roots) proportions equations of first and second degree diophantine equations, continuous fractions logarithms irrational and imaginary quantities cubic and higher equations progressions (sequences) combinatorics infinite series and analytic operations with infinite series binomial theorem. (Tellkampf, 1829, Table of contents, translated) This list contains the subject matter of the so-called "scientific course" from Quarta (third year) to Prima (ninth and last year). Typical for the combinato- rial analysis of the time are two elements of this catalogue: (a) the appearance of combinatorics before the theory of series, because the latter was consid- ered to be an application of combinatorics, and (b) the binomial theorem, which was seen as the culminating point of school mathematics, because this formula rules the basic arithmetical operations with power series. In the Prussian syllabus of 1901, the binomial theorem still had this role. The con- tents prescribed as compulsory in the 1812 Abitur edict are printed in italics. This compulsory canon was supplemented by combinatorics and the binomial theorem in the 1834 revision of the Abitur edict, which means that the core elements of the combinatorial view were made compulsory only then. The intuitive analogy between finite and infinite series and hence the uni- versality and simplicity of algebraic analysis are dependent on the unrestricted operations with infinite series. The restriction to convergent series thus con- tradicts the spirit of the theory. After publication of A. L. Cauchy's famous 4.2 The Role of Applications After stating these facts concerning the mathematical structure of the syllabus, I shall now take a closer look at the role of applications in school mathemat- ics. I shall go back to Süvern's syllabus of 1812. While the latter was never made compulsory, only being made known to the Provinzialschulkollegien as a guideline in 1816, it strongly influenced the activity of the Prussian admin- istration of education until the 1820s (cf. Jahnke, 1990b, chap. V). In this syllabus, we find essentially the same contents as in the list above, but with one remarkable difference. For Prima (9th and last grade), it additionally pre- scribed probability theory, and ". . . the disciplines of applied mathematics, in particular of the mechanical sciences instead of geometry" (Mushacke, 1858, p. 243, translated). Conversely, it can be noted that the everyday practical applications in the sense of ordinary arithmetic occur only in a marginal observation, which states laconically: "In Quinta, continuation of numerical instruction in irregular systems, which involve the exercise of ap- plied calculations in all regards" (p. 242). That this merely served as a formal acknowledgement to external demand had been stated by the full professor of the Berlin university responsible for mathematics, Johann Georg Tralles (1763-1821): textbooks (1821/1897, 1823/1899), the view that only convergent series were permitted came to prevail in Germany. Textbook authors, while adapt- ing to this trend, maintained the concept of algebraic analysis, adhering to Cauchy's standards only superficially by supplementing some convergence proofs. However, most of them did not follow Cauchy's conceptually revo- lutionary step in treating algebraic analysis as a theory of continuous func- tions. CULTURAL INFLUENCES: A HISTORICAL CASE 422 However , I believe that the school should not accept the role of teaching that which is useful to each social class; this would lead to a useless diversification in subject matter at the expense of thoroughness . . . . Given this, I deem it most useful to set aside all the so-called practical subject matters and to engage in only pure mathematical sciences or that which can be considered as such. (cited in Jahnke, 1990b, p. 244, translated) The contemporary debate thus distinguished sharply between two types of application: On the one side, were the everyday practical demands in the sense of ordinary arithmetic; on the other side, applications like mechanics, which could be conceived, as Tralle said in his above remarks, "as of pure mathematics." I should like to designate these applications as theoretical ap- Download 5.72 Mb. Do'stlaringiz bilan baham: |
Ma'lumotlar bazasi mualliflik huquqi bilan himoyalangan ©fayllar.org 2024
ma'muriyatiga murojaat qiling
ma'muriyatiga murojaat qiling