Book · January 994 citations 110 reads 2,264 authors


part of the mathematical enterprise (e.g., what makes an acceptable proof?)


Download 5.72 Mb.
Pdf ko'rish
bet169/176
Sana20.10.2023
Hajmi5.72 Mb.
#1712691
1   ...   165   166   167   168   169   170   171   172   ...   176
Bog'liq
1994 Book DidacticsOfMathematicsAsAScien


part of the mathematical enterprise (e.g., what makes an acceptable proof?),
let alone the identification of the role of mathematics in "formatting" society
(Skovsmose, 1992; see, also, Noss, 1988a).
The key distinction is thus in the extent to which non-trivial mathematics
plays any role in popular culture, and to which any of its meanings are "con-
sumed" by non-mathematicians. And it is here that the position becomes
more complex. For while it is true that mathematics is not a commodity in
arguing for cultural relativity and delineation. In order to study the extent of
application of Green's argument in a mathematical context, I shall try to re-
cast Green's argument in mathematical terms.
RICHARD NOSS
437


the sense that music is (it is not advertised, it is not the subject of everyday
conversation, mathematicians are not [in general] offered huge contracts and
salaries), it is true that mathematical ideas enter our culture in unanticipated
ways.
As an example, consider the surprising way in which the sudden explo-
sion of interest in non-linear dynamical systems has spawned a bizarre in-
dustry of sociologists, political scientists and post-modernists of all kinds,
all borrowing some version of what they perceive as "chaos" in the be-
haviour of human systems: A prevalent example is the belief that the
"chaos" of, say, European politics is somehow connected with the "chaos"
of non-linear systems. (It is interesting to speculate what would be the situa-
tion if "chaos theory" had entered the world with the – perhaps more accu-
rate – name of "order theory.") Of course this is not a new phenomenon:
Darwin's theory has long been characterized in the popular imagination as
"survival of the fittest," just as much as Piaget's psychology has been re-in-
terpreted as a theory of (un)readiness. In all such cases, the appearance of
scientific theories as only consisting of inherent meanings is shown to be
illusory: In a society in which almost anything can become a commodity,
scientific ideas cannot remain immune.
In the case of music, Green argues that the fetishism of music is dialecti-
cally constructed from two sides. One is the surface reality that delineated
musical meanings are the only aspects that are communicable, and that in-
herent meanings are therefore beyond reach, "untouchable essences." The
other appears to be a converse: It is that delineated meanings are "distrac-
tions" from the pure and untouchable inherent meaning of music, and that
attention should be focused instead on the inherent, pure, musical meaning.
The situation is not dissimilar for mathematics. On the one hand, it is
claimed that mathematical truth is an untouchable essence: The "language
of mathematics" is, from this perspective, entirely inaccessible for all but
the chosen few. On the other hand, there is a view – subscribed to by many
mathematicians – that mathematics is incommunicable, and that, insofar as
communication is synonymous with delineated, ideological meanings,
"real" mathematics must focus exclusively on that which is inherent in the
structure of mathematics itself.
As an example, it is instructive to turn to the provocative paper by John
Guckenheimer (1978), which discusses differences in approach and style on
the (then) new subject of catastrophe theory. Guckenheimer contrasts catas-
trophe theory as conceived by two mathematicians: René Thom and Chris
Zeeman. He points out that "Catastrophe Theory chez Zeeman is much more
concrete than it is chez Thom" (p. 16). Zeeman's classic example of an ele-
mentary catastrophe is his celebrated model of aggression in dogs, and he
has applied the theory to situations as diverse as financial speculation, heart
attacks and prison disturbances. It is precisely this focus on delineated
meanings, on other than pure mathematical essence, that led to a radical cri-
MATHEMATICS AND IDEOLOGY
438


tique from some mathematicians, who attacked Zeeman's models as "de-
ceptive and wrong," and pointed out that "many things which they assert are
wrong productions of the models, incorrect reasoning within the models,
and ploys to divert the attention of the reader" (p. 17, emphasis added).
Worse still, Zeeman often adopts a style of writing that is fluid and enter-
taining, in contrast to a more rigid style, which helps maintain the barrier
between the mathematical community and a broader audience. Thus
Zeeman stands accused of communicating mathematics through the intro-
duction of delineated meanings at the expense of inherent meanings, a strat-
egy that lays him open to the deepest criticisms possible: communication,
application as well as an appeal to geometric (as opposed to algebraic) intu-
ition – indeed, a failure to behave like a mathematician at all.
5. TOWARDS SOME CONCLUSIONS FOR THE CURRICULUM
The foregoing analysis is premised on a view of the mathematics curriculum
as an intersection of competing and often implicit demands and interests,
which are reflected in what Green refers to as the inherent and delineated
meanings co-produced by mathematicians, mathematics teachers and stu-
dents, and which I prefer to think of as a tension between the structural and
the ideological. At base, the analogy with music allows us to see the gener-
ation of mathematical meaning as emerging from a dialectic between struc-
tural and ideological meanings. The workings of this dialectic are played out
in many ways, not least in the tension between form and content; between,
say, the empty ritual of the form of mathematical proving, and the much-ne-
glected meanings that adhere from the structure of mathematical proof.
Mathematical ways of thinking, formal proof, symbolic rigour are not sur-
face realities, ways of expressing, representations of pure essences; and nei-
ther do they sum up what mathematics is; they do not themselves constitute
mathematical activity.
Some years ago, there was a furore in the British press and questions
asked in parliament because a national mathematics examination question
had asked candidates to compare the amounts spent on armaments by both
(then) superpowers with the cost of feeding the starving. What lay at the
root of the uproar? The rhetoric was of brainwashing children, of teachers
encouraging students to believe (through mathematics) that – heaven forbid
expenditure on arms might be funded at the expense (literally) of provid-
ing basic human needs. The details of this "debate" are unimportant. For
me, the most interesting aspect of the affair was that the political arguments
were premised on the assumption that mathematics is supposed to be about
nothing, that it is meaning-less, composed purely of structural, untouchable
"essences." I think the example tells us something about the way in which
mathematics is (sometimes) conceived as a school subject. It plays a role in
dehumanizing thought, in seeing relationships between people as if they
RICHARD NOSS
439


MATHEMATIC
S AND IDEOLOGY
were merely relationships about, say, numbers. The critical mechanism for
this is that delineated meanings must be suppressed at all costs.
But the picture is more complex than it seems. The meanings of the maths
taught in schools are, to use Chevallard's phrase, "transposed" into some-
thing other even than the "pure," "inherent" meanings of mathematics.
School mathematics (the sort that would emphatically not discuss the kinds
of issues raised in the above examination question) is replete with delin-
eated meanings drawn from pedagogical discourse: that problems are for
solving rather than for posing; that solutions are right or wrong; that they
can be easily assessed and so on. And so it turns out that the call to delimit
school maths to its apparent structural meanings is actually quite the re-
verse: It represents an attempt to focus attention (albeit implicitly) on a va-
riety of delineations, which perform an (apparently) important ideological
function.
In his seminal book, The Politics of Mathematics Education, Stieg
Mellin-Olsen (1987) argues that "Mathematics is . . . a structure of thinking-
tools appropriate for understanding, building or changing a society" (p. 17).
He bases his case on the politics of pedagogy, how mathematics is taught
and how it should be taught. In a review article (Noss, 1988b), I suggested
that a more complete analysis would involve an explicit focus on the politics
of the mathematics curriculum – why it is like it is, and how it functions
socially. I remain intuitively attracted to Mellin-Olsen's claim, and I believe
that further investigation of it remains an important task for mathematics
education. It may be that an awareness of the tensions between structural
and ideological mathematical meanings might provide some useful insights
in this work.
440
REFERENCES
Adorno, T. W. (1976). Introduction to the sociology of music (E. B. Ashton, Trans.). New
York: Seabury Press.
Bassey, M. (1992). The great education conspiracy? Unpublished manuscript, Nottingham
Polytechnic, England.
Barrett, M. (1991). The politics of truth: From Marx to Foucault. Cambridge: Polity Press.
Bowles, S., & Gintis, H (1976). Schooling in capitalist America. London: RKP
Braverman, H. (1974). Labor and monopoly capital: The degradation of work in the twen-

Download 5.72 Mb.

Do'stlaringiz bilan baham:
1   ...   165   166   167   168   169   170   171   172   ...   176




Ma'lumotlar bazasi mualliflik huquqi bilan himoyalangan ©fayllar.org 2024
ma'muriyatiga murojaat qiling