Boshlang'ich sinflarda matematika o'qitish metodikasi
Download 7.79 Mb. Pdf ko'rish
|
8boshsinfmatematikapdf
Sonlarning xossalari
I b n S in o a y tis h ic h a s o n la m in g ta b iiy q a to ri s h u n d a y b e rilg a n : 1 , 2 , 3 , 4 , 5 , 6 , 7 , 8 , 9 , 1 0 , 1 1 , 1 2 , 1 3 , ... B u n d a y q a to rd a g i h a r b ir s o n n in g b o s h q a la r ig a tu rlic h a b o g N a n is h la ri x o s s a la ri o lim to m o n id a n k o ‘r s a tib b e rila d i. Sonning eng ilgarigi m ashhur xossasi 1. H a r b ir s o n y o n id a g i k ic h ig i b ila n k a tta s i y ig N n d is in in g y a r- m ig a te n g h a m d a o ‘z id a n sh u n d a y te n g u z o q lik d a g i s o n la r y ig N n d is in in g y a r m ig a te n g . 71 M a s a la n , 5 ni ta n la s a k , y o n id a g i k ic h ig i 4, k a tta s i 6. K o ‘ra m iz k i, 5 = (4 + 6 ):2 , b u 5 d a n 3 v a 7, 2 v a 8 d a n te n g u z o q lik d a , s h u n in g u c h u n 5 = (3 + 7 ):2 va 5 = (2 + 8 ):2 . 2. H a r b ir so n o ‘z - o ‘z ig a k o ‘p a y tm a s in in g 2 m a rta s ig a 2 q o ‘s h il- g a n i b ila n ikki y o n d a g i q o ‘sh n i s o n n in g o ‘z - o ‘z ig a k o ‘p a y tm a s i y ig ‘in d is ig a te n g boM adi. B e rilg a n s o n 6 boM sin, y o n id a g i s o n la r 5 v a 7. 6 • 6 • 2 + 2 = 74 , 5 • 5 + 7 • 7 = 74 . D e m a k , 6 • 6 • 2 + 2 = 5 • 5 + 7 • 7. 3. H a r q a n d a y s o n n in g o ‘z - o ‘z ig a k o ‘p a y tm a s i u n g a q o ‘sh n i boM gan s o n la r k o ‘p a y tm a s ig a b ir q o ‘s h ilg a n ig a te n g : M a sa la n , 5 • 5 = 4 • 6+1 y o k i 8 • 8 = 7 • 9 + 1. 4. S o n la r sanogM to q boM sin: 1 + 2 + 3 + 4 + 5 + 6 + 7 — sanogM 7 ta. B u n i 7 + 6 + 5 + 4 + 3 + 2 + 1 k o ‘r in is h d a y o z a m iz . T u s h u n is h o s- o n k i, 7 ( 7 + l) :2 = 2 8 . 5. S o n la r sanogM j u f t boM sin: 1 + 2 + 3 + 4 , sanogM 4 ta . 4 + 3 + 2 + 1 k o ‘rin is h d a y o z a m iz , b u n d a n 4 - (4 + l) :2 = 1 0 . Qo‘shisliga tegishlixossalar 1. S o n la r k e tm a - k e t o r tib b o ru v c h i b oM ibgina q o lm a y , 2 ta d a n , 3 ta d a n , 4 ta d a n ... o r tib b o ru v c h i boM sin. B iro v a y ts a k i, q a to rd a g i s o n la rn in g b irin c h is i 4 , ik k in c h is i 7, u c h in c h is i 10, y a ’ni k e y in g i h a r b iri o ld in g is id a n 3 ta d a n o rtiq boM sa, u n d a y q a to rd a g i 7 ta s o n yigM ndisi q a n c h a d e s a , sh u n d a y 2 ta q a to r y o z a m iz : 4 + 7 + 1 0 + 13 + 1 6 + 1 9 + 2 2 = 91 2 2 + 1 9 + 1 6 + 1 3 + 10 + 7 + 4 = 91 . N a tija d a n sh u n a rs a m aM um ki, b itta q a to r yigM ndisi: 7 - ( ( 4 + 2 2 ) : 2 ) = 7 - 13 = 91. D e m a k , q a to rd a g i s o n la r yigM ndisi b irin c h i s o n b ila n o x ir g i so n y ig N n d is in in g y a r m i b ila n , q a to rd a g i s o n la r sanogM k o ‘p a y tm a s ig a te n g boM adi. Q a to rd a g i s o n la r b itta d a n o r tib b o ru v c h i boM sin: 1 + 2 + 3 + 4 + 5. Q a to r d a 5 ta so n b o r. B u la m in g yigM ndisi: 5 - ( l + 5 ) : 2 = 5 - 3 = 15 y o k i 1 + 2 + 3 + 4 + 5 = 1 5 . 2. S o n la r q a to rid a g i to q s o n la r yigM ndisi s o n la r san o g M n in g o ‘z- o ‘z ig a k o ‘p a y tm a s ig a te n g . M a s a la n , q a to rd a g i so n la r: I + 3 + 5 + 7 + 9 boM sin. SanogM 5 ta. Y igM ndisi 5 • 5 = 25 boM adi. S h u n in g d e k , 1 + 3 = 2-2 = 4 ; l + 3 + 5 = 3 - 3 = 9; 72 1 + 3 + 5 + 7 = 4 - 4 = 1 6 ; 1 + 3 + 5 + 7 + ...+ 33 + 3 7 + 3 9 = = 2 0 • 2 0 = 4 0 0 . C h u n k i, b u q a to rd a g i s o n la r s a n o g ‘i 2 0 ta , q o n u n i- y a tn i c h iq a r is h u c h u n 1 + 3 + 5 + 7 q a to m i 1 + (2 + 1) + + (3 + 2 ) + (4 + 3 ) k o ‘r in is h d a y o k i 1 + 2 + 3 + 4 + 1 + 2 + + 3, y o k i 1 + 2 + 3 + 4 + 3 + 2 + 1, y o k i 1 + 2 + 3 + 3 + 2 + +1 + 4 k o ‘rin is h d a , y o k i (1 + 3 ) • 3 + 4 , y o k i 4 - 3 + 4 , y o k i 4 S ( 3 + + 1) = 4 - 4 = 16 k o ‘r in is h d a y o z a m iz . 3. O p a - s in g il M o h ig u l v a M a q s u d a , a k a - u k a J a s u r v a J a h o n g ir b a r c h a b ir v a ik k i x o n a li s o n la rn i b o M in ish ig a k o ‘ra te k s h irib c h iq is h ib , q u y id a g i x u lo s a g a k e lis h d i. 2 , 3, 5, 7 , 9, 11, 13, 15, 19, 21 , 2 3 , 2 5 , 2 7 , 2 9 , 3 1 , 3 3 , 3 5 , 3 7 , 3 9 , 4 1 , 4 3 , 4 5 , 4 7 , 4 9 , 5 1 , 6 1 , 6 7 , 7 1 , 7 3 , 7 9 , 8 3 , 8 9 , 97 la r ,,x u d b in “ s o n la r e k a n . Y a ’n i u la r o ‘z la rid a n ta s h q a r i fa q a t 1 s o n ig a boM inadi, b o s h q a h e c h b ir s o n g a b o M in m a y d ig a n s o n la r to if a s ig a k ir a r e k a n . B u n i te k s h ir ib k o ‘rin g . 4 , 9 , 2 5 , 4 9 so n la ri e s a ,,x a s is “ - a tig i b irg in a b o M u v ch isi b o r s o n la r g u r u h in i ta s h k il e tis h a r ek a n . Ik k i v a u n d a n o rtiq b oM uvchisi b o r s o n la r k o ‘p c h i l i k n i — te k s h ir ilg a n s o n la m in g u c h d a n ik k i q is m in i ta s h k il e tis h a rk a n . A m m o , t o ‘r tta s o n : 6 0 , 7 2 , 9 0 , 9 6 la m in g b a g ‘rla ri j u d a k e n g e k a n . N e g a k i, u la rn in g h a r b iri o ‘z la ri v a 1 n i is tis n o e tg a n d a o z e m a s , k o ‘p e m a s , r o p p a - ro s a o ‘ttiz ta d a n s o n g a b o M in is h a re k a n ! ! ! 6 0 = 2 • 3 0 , 3 • 2 0 , 4 • 15, 5 • 12, 6 • 10 v a h.k. 7 2 = 2 • 3 6 , 3 • 2 4 , 4 • 18, 6 • 12, 8 • 9 v a h.k. 9 0 = 2 • 4 5 , 3 • 3 0 , 5 • 18, 6 • 15, 9 • 10 v a h.k. 9 6 = 2 • 4 8 , 3 • 3 2 , 4 • 2 4 , 6 • 16, 8 • 12 v a h.k. Download 7.79 Mb. Do'stlaringiz bilan baham: |
Ma'lumotlar bazasi mualliflik huquqi bilan himoyalangan ©fayllar.org 2024
ma'muriyatiga murojaat qiling
ma'muriyatiga murojaat qiling