Dinamik sistemalarning tarixi va fazali portretlarini chizish yo’llari haqida Annotatsiya
Download 375.35 Kb. Pdf ko'rish
|
1- mavzu
Foydalanilgan adabiyotlar
1. Rasulov X.R., Qamariddinova Sh.R. Ayrim dinamik sistemalarning tahlili haqida G’G’ Scientific progress, 2:1 (2021), r.448-454. 2. Rasulov X.R., Djurakulova F.M. Ba’zi dinamik sistemalarning sonli echimlari uakvda G’G’ Scientific progress, 2:1 (2021), r.455-462. 3. Rasulov X.R., Sobirov S.J. Zadacha tipa zadach Gellerstedta dlya odnogo uravneniya smeshannogo tipa s dvumya liniyami vo’rojdeniya G’G’ Scientific progress, 2:1 (2021), r.42-48. 4. Rasulov X.R. Ob odnoy kraevoy zadache dlya uravneniya giperbolicheskogo tipa G’G’ «Kompleksno’y analiz, matematicheskaya Fizika i nelineyno’e uravneniya» Mejdunarodnaya nauchnaya konferentsiya Sbornik tezisov Bashkortostan RF (oz. Bannoe, 18 - 22 marta 2019 g.), s.65-66. 5. Rasulov X.R., Rashidov A.Sh. Organizatsiya prakticheskogo zanyatiya na osnove innovatsionno’x texnologiy na urokax matematiki G’G’ Nauka, texnika i obrazovanie, 72:8 (2020) s.29-32. 6. Rasulov T.X,., Rasulov X.R. Uzgarishi chegaralangan funktsiyalar bulimini ukitishga doir metodik tavsiyalar G’G’ Scientific progress, 2:1 (2021), r.559-567. 7. Rasulov X.R., Rashidov A.Sh. O suhestvovanii obobhennogo resheniya kraevoy zadachi dlya nelineynogo uravneniya smeshannogo tipa G’G’ Vestnik nauki i obrazovaniya, 97:19-1 (2020), S. 6-9. 8. Rasulov X.R. i dr. O razreshimosti zadachi Koshi dlya vo’rojdayuhegosya kvazilineynogo uravneniya giperbolicheskogo tipa G’G’ Ucheno’y XXI veka, mejdunarodno’y nauchno’y jurnal, 53:6-1 (2019), s.16-18 . 9. Rasulov X.R., Djurakulova F.M. Ob odnoy dinamicheskoy sisteme s ne- prero’vno’m vremenem G’G’ Nauka, texnika i obrazovanie, 72:2-2 (2021) s.19-22. 10. Rasulov X.R., Yashieva F.Yu. O nekotoro’x volterrovskix kvadra-tichno’x stoxasticheskix operatorax dvupoloy populyatsii s neprero’vno’m vremenem G’G’ Nauka, texnika i obrazovanie, 72:2-2 (2021) s.23-26. 11. Rasulov X.R., Kamariddinova Sh.R. Ob analize nekotoro’x nevolterrovskix dinamicheskix sistem s neprero’vno’m vremenem G’G’ Nauka, texnika i obrazovanie, 72:2-2 (2021) s.27-30. 12. Rasulov X.R. Ob odnoy nelokalnoy zadache dlya uravneniya giperbolicheskogo tipa G’G’ XXX Kro’mskaya Osennyaya Matematicheskaya Shkola- simpozium po spektralno’m i evolyutsionno’m zadacham. Sbornik materialov mejdunarodnoy konferentsii KROMSh-2019, c. 197-199. 13. Rasulov X.R., Sobirov S.J. Modul katnashgan ba’zi tenglama, tengsizlik va tenglamalar sistemalarini echish yullari G’G’ Science and Education, scientific journal, 2:9 (2021), r.7-20. 14. Rasulov X.R., Raupova M.X. Rol matematiki v biologicheskix naukax G’G’ Problemo’ pedagogiki, № 53:2 (2021), s. 7-10. 15. Rasulov X.R., Raupova M.X. Matematicheskie modeli i zakono’ v biologii G’G’ Scientific progress, 2:2 (2021), r.870-879. 16. Rasulov T.X., Baxronov B.I. (2015). O spektre tenzornoy summo’ modeley Fridrixsa. Molodoy uchyono’y. № 9, S. 17-20. 17. Rasulov T.H., Tosheva N.A. (2019). Analytic description of the essential spectrum of a family of 3x3 operator matrices. Nanosystems: Phys., Chem., Math., 10:5, pp. 511-519. 18. Rasulov T.X. (2016). O vetvyax suhestvennogo spektra reshetchatoy modeli spin-bozona s ne bolee chem dvumya fotonami. TMF, 186:2, C. 293-310. 19. Rasulov T.X. (2011). O chisle sobstvenno’x znacheniy odnogo matrichnogo operatora. Sibirskiy matematicheskiy jurnal, 52:2, S. 400-415. 20. Lakaev S.N., Rasulov T.Kh. (2003). A Model in the Theory of Perturbations of the Essential Spectrum of Multiparticle Operators. Math. Notes. 73:4, pp. 521-528. 21. Rasulov T.X., Dilmurodov E.B. (2020). Beskonechnost chisla sobstvenno’x znacheniy operatorno’x (2x2)-matrits. Asimptotika diskretnogo spektra. TMF. 3(205), C. 368-390. 22. Dilmurodov E.B., Rasulov T.H. (2020). Essential spectrum of a 2x2 operator matrix and the Faddeev equation. European science, 51:2, Part II, pp. 7-10. 23. Bahronov B.I., Rasulov T.H. (2020). Structure of the numerical range of Friedrichs model with rank two perturbation. European science. 51:2, pp. 15-18. 24. Umirkulova G.H., Rasulov T.H. (2020). Characteristic property of the Faddeev equation for three-particle model operator on a one-dimensional lattice. European science. 51:2, Part II, pp. 19-22. 25. Lakaev S.N., Rasulov T.Kh. (2003). Efimov's Effect in a Model of Perturbation Theory of the Essential Spectrum. Functional Analysis and its Appl. 37:1, p. 69-71. 26. Rasulov T.H. (2010). Asymptotics of the discrete spectrum of a model operator associated with a system of three particles on a lattice. Theoretical and Mathematical Physics. 163:1, pp. 429-437. 27. Kurbonov G.G., Rasulov T.H. (2020). Essential and discrete spectrum of the three-particle model operator having tensor sum form. Academy. 55:4, pp. 8-13. 28. Rasulov T.X. (2010). Issledovanie suhestvennogo spektra odnogo matrichnogo operatora. TMF, 164 (1), S. 62-77. 29. Albeverio S., Lakaev S.N., Rasulov T.H. (2007). On the Spectrum of an Hamiltonian in Fock Space. Discrete Spectrum Asymptotics. Journal of Statistical Physics, 127:2, pp. 191-220. 30. Albeverio S., Lakaev S.N., Rasulov T.H. (2007). The Efimov Effect for a Model Operator Associated with the Hamiltonian of non Conserved Number of Download 375.35 Kb. Do'stlaringiz bilan baham: |
Ma'lumotlar bazasi mualliflik huquqi bilan himoyalangan ©fayllar.org 2024
ma'muriyatiga murojaat qiling
ma'muriyatiga murojaat qiling