Дмитрий Шахов, фрилансер, г. Москва


Рис. 1. Типы компьютерной графики: а — растровая; б — векторная; в — фрактальная


Download 341.16 Kb.
bet3/4
Sana30.11.2020
Hajmi341.16 Kb.
#156035
1   2   3   4
Bog'liq
Документ Microsoft Word


Рис. 1. Типы компьютерной графики: а — растровая; б — векторная; в — фрактальная

В векторной графике основным элементом изображения является  линия (не важно, прямая или кривая). Разумеется, в растровой графике тоже существуют линии, но там они рассматриваются как комбинации точек. Для каждой точки линии в растровой графике отводится одна или несколько ячеек памяти (чем больше цветов могут иметь точки, тем больше ячеек им выделяется). Соответственно, чем длиннее растровая линия, тем больше памяти она занимает. В векторной графике объем памяти, занимаемый линией, не зависит от размеров линии, поскольку линия представляется в виде формулы, а точнее, в виде нескольких параметров. Что бы мы ни делали с этой линией, меняются только ее параметры, хранящиеся в ячейках памяти. Количество же ячеек для любой линии остается неизменным.





Рис. 2. Пример фрактальности в природе — капуста Романеску

Изображение в векторном формате легко редактируется: его можно без потерь масштабировать, поворачивать, деформировать. Имитация трехмерности в векторной графике тоже проще, чем в растровой.  Дело в том, что каждое преобразование фактически выполняется так: старое изображение (или фрагмент) стирается, а вместо него строится новое. Математическое описание векторного рисунка остается прежним — изменяются только значения некоторых переменных, например коэффициентов.

Фрактальная графика относительно молода по сравнению с растровой и векторной графикой. Основой фрактальной графики является фрактальная геометрия, позволяющая математически описывать различные виды неоднородностей, встречающихся в природе. Понятия «фрактал», «фрактальная геометрия» и «фрактальная графика» появились в конце 1970­х. Слово «фрактал» образовано от латинского fractus и означает «состоящий из фрагментов». Оно было предложено математиком Бенуа Мандельбротом в 1975 году для обозначения нерегулярных, но самоподобных структур. Рождение фрактальной геометрии принято связывать с выходом в 1977 году книги «The Fractal Geometry of Nature» Бенуа Мандельброта. Определение фрактала, данное Мандельбротом: фракталом называется структура, состоящая из частей, которые в каком­то смысле подобны целому. Самоподобие — одно из основных свойств фракталов. Таким образом, фрактальная графика — это вид компьютерной графики, в которой в той или иной мере используются самоподобные структуры (проще говоря, фракталы). Далее мы поговорим о том, что же такое самоподобие и где в природе встречаются фракталы.

Что подразумевается под самоподобием? Капуста Романеску из Италии — самый характерный пример фрактального объекта в природе. Капустные почки у нее нарастают в виде некой спирали (рис. 2), которая называется логарифмической, а число капустных почек  совпадает с числом Фибоначчи. Числа Фибоначчи — это элементы числовой последовательности 0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233, 377, 610, 987, 1597, 2584, 4181, 6765, 10946…,  в которой каждое последующее число равно сумме двух предыдущих чисел. Свое название они получили в честь средневекового математика Леонардо Пизанского (известного как Фибоначчи). Каждая часть элементов капусты Романеску имеет ту же форму, что и весь кочан. Это свойство повторяется с регулярностью в различных масштабах. По сути эта капуста является природным фракталом.  То есть как бы мы ни увеличивали фрактал, после каждого шага мы увидим ту же форму, что характерна для данного фрактала в целом. Таким образом, с фракталами тесно связаны еще два понятия — итерация и рекурсия. Рекурсия — процесс повторения элементов самоподобным образом. Итерация — упрощенно говоря — повторное применение какой­либо математической операции.





Рис. 3. Рекурсия кривой Коха

На самом деле фрактальные свойства имеет очень большое количество природных объектов — просто мало кто об этом задумывается. Вы можете любоваться облаками на небе, набегающими волнами прибоя, ходить по лесу — и даже не подозревать, что в основе этой красоты лежит математика! Да­да! Исследования фрактальных свойств природных объектов начал проводить еще Бенуа Мандельброт. Оказывается, несмотря на всю сложность природных объектов, многие из них в принципе описываются довольно простыми математическими формулами. Хотя в чистом виде фракталы в природе не существуют. То, что мы наблюдаем, — это так называемые стохастические фракталы. То есть такие фракталы, которые получаются в том случае, если в итерационном процессе случайным образом менять какие­либо его параметры. «Чистый» фрактал можно приближать до бесконечности, поскольку он обладает бесконечной рекурсией, а вот о стохастических фракталах этого сказать нельзя.

Следует отметить, что слово «фрактал» не является математическим термином и не имеет общепринятого строгого математического определения. Оно может употребляться, когда рассматриваемая фигура обладает какими­либо из следующих свойств:


  • имеет нетривиальную структуру во всех масштабах — этим фрактал отличается от регулярных фигур (таких как окружность, эллипс, график гладкой функции): если мы рассмотрим небольшой фрагмент регулярной фигуры в очень крупном масштабе, то он будет похож на фрагмент прямой. Для фрактала увеличение масштаба не ведет к упрощению структуры, поэтому на всех шкалах мы увидим одинаково сложную картину;

  • является самоподобной или приближенно самоподобной;

  • имеет дробную метрическую размерность или метрическую размерность, превосходящую топологическую.

Кроме того, для построения фрактала необходимо учитывать начальное состояние и описывающую его формулу — так называемое исходное множество, которое пропускается через некий механизм, вызывающий его отображение и добавляющий отображенное множество к исходному. Этот процесс и называется итерацией. Таким образом, после нескольких подобных относительно простых операций получается весьма сложное изображение. В процессе получения фрактала важны два момента: исходное множество и механизм преобразования. В зависимости от алгоритма построения фракталы делятся на линейные и нелинейные.

Алгоритмы построения линейных фракталов определяются линейными функциями. В них самоподобие присутствует в простейшем варианте: любая часть повторяет целое.

Нелинейные фракталы задаются нелинейной функцией роста, то есть уравнениями в степени выше первой. В них самоподобие будет более сложным: любая часть является уже не точной, а деформированной копией целого.

Один из простейших примеров линейного фрактала — кривая Коха (1904 год, немецкий математик Хельга фон Кох).

Существует простая рекурсивная процедура (получение самоподобных частей фрактала) формирования фрактальных кривых на плоскости. Зададим произвольную ломаную с конечным числом звеньев, называемую генератором. Далее заменим в ней каждый отрезок генератором (точнее, ломаной, подобной генератору). В получившейся ломаной вновь заменим каждый отрезок генератором. Продолжая до бесконечности, в пределе получим фрактальную кривую. На рис. 3 приведено несколько шагов этой процедуры для кривой Коха.

Одним из первых нелинейные фракталы описал французский математик Гастон Жюлиа еще в 1918 году. Но в его работе отсутствовали изображения исследованных им множеств и термин «фрактал».



В наше время компьютеры позволили получить изображения множеств Жюлиа (рис. 4а), которые вместе с множествами Мандельброта(рис. 4б) являются ныне самыми известными квадратичными фрактальными структурами.





Download 341.16 Kb.

Do'stlaringiz bilan baham:
1   2   3   4




Ma'lumotlar bazasi mualliflik huquqi bilan himoyalangan ©fayllar.org 2024
ma'muriyatiga murojaat qiling