Economic Growth Second Edition
Figure 1.6 Effects from an increase in the saving rate
Download 0.79 Mb. Pdf ko'rish
|
BarroSalaIMartin2004Chap1-2
Figure 1.6
Effects from an increase in the saving rate. Starting from the steady-state capital per person k ∗ 1 , an increase in s from s 1 to s 2 shifts the s · f (k)/k curve to the right. At the old steady state, investment exceeds effective depreciation, and the growth rate of k becomes positive. Capital per person rises until the economy approaches its new steady state at k ∗ 2 > k ∗ 1 . positive per capita growth rates. In the long run, the levels of k and y are permanently higher, but the per capita growth rates return to zero. The positive transitional growth rates may suggest that the economy could grow forever by raising the saving rate over and over again. One problem with this line of reasoning is that the saving rate is a fraction, a number between zero and one. Since people cannot save more than everything, the saving rate is bounded by one. Notice that, even if people could save all their income, the saving curve would still cross the depreciation line and, as a result, long-run per capita growth would stop. 18 The reason is that the workings of diminishing returns to capital eventually bring the economy back to the zero-growth steady state. Therefore, we can now answer the question that motivated the beginning of this chapter: “Can income per capita grow forever by simply saving and investing physical capital?” If the production function is neoclassical, the answer is “no.” We can also assess permanent changes in the growth rate of population, n. These changes could reflect shifts of household behavior or changes in government policies that influence fertility. A decrease in n shifts the depreciation line downward, so that the steady-state level of capital per worker would be larger. However, the long-run growth rate of capital per person would remain at zero. 18. Before reaching s = 1, the economy would reach s gold , so that further increases in saving rates would put the economy in the dynamically inefficient region. Growth Models with Exogenous Saving Rates 43 A permanent, once-and-for-all improvement in the level of the technology has similar, temporary effects on the per capita growth rates. If the production function f (k) shifts upward in a proportional manner, then the saving curve shifts upward, just as in figure 1.6. Hence, ˙ k /k again becomes positive temporarily. In the long run, the permanent improvement in technology generates higher levels of k and y but no changes in the per capita growth rates. The key difference between improvements in knowledge and increases in the saving rate is that improvements in knowledge are not bounded. That is, the production function can shift over and over again because, in principle, there are no limits to human knowledge. The saving rate, however, is physically bounded by one. It follows that, if we want to generate growth in long-run per capita income and consumption within the neoclassical framework, growth must come from technological progress rather than from physical capital accumulation. We observed before (note 3) that differences in government policies and institutions can amount to variations in the level of the technology. For example, high tax rates on capital income, failures to protect property rights, and distorting government regulations can be economically equivalent to a poorer level of technology. However, it is probably infeasible to achieve perpetual growth through an unending sequence of improvements in government policies and institutions. Therefore, in the long run, sustained growth would still depend on technological progress. Download 0.79 Mb. Do'stlaringiz bilan baham: |
Ma'lumotlar bazasi mualliflik huquqi bilan himoyalangan ©fayllar.org 2025
ma'muriyatiga murojaat qiling
ma'muriyatiga murojaat qiling